Issues

 / 

2021

 / 

August

  

Physics of our days


Nonlinear dynamics of creative thinking. Multimodal processes and the interaction of heteroclinic structures

  a,   b
a BioCircuits Institute, University of California, 9500 Gilman Drive #0328 La Jolla, San Diego, CA, 92093-0328, USA
b Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, Madrid, Spain

The dynamic processes of creative thinking, as confirmed by recent studies using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), are interactions among three main components: the originality of the author, the author's autobiographical memory, and the purpose or stimulus of the process. Different stimuli initiate the excitation of different memory components and, accordingly, different neuronal clusters and brain networks. New data make it possible to build a model of the birth and development of creative thinking, i.e., to elaborate a theory of a process that is itself, by definition, indefinitely structured and unpredictable, with the use of a structurally organized mathematical approach—nonlinear dynamics. The following key concept is discussed: the evolution of thought or the essence of other human creative activity is a dynamic process characterized by internal instability leading to the generation of new information. To construct a nonlinear dynamic model of human creativity, the following ideas common to most mental processes are used: (1) a mathematical model should be based on variables representing the evolution of brain elements in their temporal coherence and should have solutions corresponding to metastable patterns (blocks of knowledge) in the brain, (2) the model is based on competitive dynamics without a winner, i.e., a nonlinear process of interaction of many information elements or spatio-temporal modes, which guarantees sequential switching between metastable states and, as a result, a certain stability of the dynamics of creativity, (3) the model is an open dissipative system in which inhibition is balanced by excitation; as a result, being close to the boundary of instability, it turns out to be extremely sensitive to information influences.

Fulltext pdf (2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.09.038837
Keywords: nonlinear dynamics, neural networks, creative thinking, models of brain functioning
PACS: 05.45.−a, 87.19.L−, 89.75.−k (all)
DOI: 10.3367/UFNe.2020.09.038837
URL: https://ufn.ru/en/articles/2021/8/b/
000711503200002
2-s2.0-85119663886
2021PhyU...64..801R
Citation: Rabinovich M I, Varona P "Nonlinear dynamics of creative thinking. Multimodal processes and the interaction of heteroclinic structures" Phys. Usp. 64 801–814 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, July 2020, 20th, September 2020

Оригинал: Рабинович М И, Варона П «Нелинейная динамика творческого мышления. Многомодальные процессы и взаимодействие гетероклинических структур» УФН 191 846–860 (2021); DOI: 10.3367/UFNr.2020.09.038837

References (54) ↓ Cited by (3) Similar articles (8)

  1. Poincaré H Le Valeur De La Science (Paris: E. Flammarion, 1905)
  2. Henriques G A New Unified Theory Of Psychology (New York: Springer, 2011)
  3. Rabinovich M I, Tristan I, Varona P Neurosci. Biobehav. Rev. 55 18 (2015)
  4. Rabinovich M I, Simmons A N, Varona P Trends Cogn. Sci. 19 453 (2015)
  5. Friston K Nat. Rev. Neurosci. 11 127 (2010)
  6. Beaty R E et al Proc. Natl. Acad. Sci. USA 115 1087 (2018)
  7. Rosenberg M D et al Proc. Natl. Acad. Sci. USA 117 3797 (2020)
  8. Bressler S L, Menon V Trends Cogn. Sci. 14 277 (2010)
  9. Rosen D S et al NeuroImage 213 116632 (2020)
  10. Fink A et al Human Brain Mapping 30 734 (2009)
  11. Jung-Beeman M et al PLoS Biol. 2 e97 (2004)
  12. Stevens C E (Jr.), Zabelina D L Curr. Opin. Behav. Sci. 27 154 (2019)
  13. Madore K P, Addis D R, Schacter D L Psychol. Sci. 26 1461 (2015)
  14. Benedek M, Fink A Curr. Opin. Behav. Sci. 27 116 (2019)
  15. Benedek M et al NeuroImage 210 116586 (2020)
  16. Schacter D L et al Neuron 76 677 (2012)
  17. Swaab D F We Are Our Brains: A Neurobiography Of The Brain, From The Womb To Alzheimer’s (New York: Spiegel and Grau, 2014)
  18. Coveney P V Philos. Trans. R. Soc. Lond. A 361 1057 (2003)
  19. Afraimovich V S, Rabinovich M I, Varona P Int. J. Bifurc. Chaos 14 1195 (2004)
  20. Varona P, Rabinovich M I Proc. R. Soc. Lond. B 283 20160475 (2016)
  21. Rabinovich M, Huerta R, Laurent G Science 321 48 (2008)
  22. Rabinovich M et al Phys. Rev. Lett. 87 68102 (2001)
  23. Rabinovich M I, Varona P, Selverston A I, Abarbanel H D I Rev. Mod. Phys. 78 1213 (2006)
  24. Venaille A, Varona P, Rabinovich M I Phys. Rev. E 71 061909 (2005)
  25. Rabinovich M I, Friston K J, Varona P (Eds) Principles Of Brain Dynamics : Global State Interactions (Cambridge, MA: MIT Press, 2012)
  26. Rabinovich M I, Myuezinolu M K Usp. Fiz. Nauk 180 371 (2010); Rabinovich M I, Muezzinoglu M K Phys. Usp. 53 357 (2010)
  27. Rabinovich M, Tristan I, Varona P PLoS One 8 e64406 (2013)
  28. Rabinovich M I, Huerta R, Varona P Phys. Rev. Lett. 96 014101 (2006)
  29. Afraimovich V S, Zaks M A, Rabinovich M I Chaos 28 053107 (2018)
  30. Rabinovich M I, Afraimovich V S, Varona P Dyn. Syst. 25 433 (2010)
  31. Afraimovich V, Gong X, Rabinovich M Chaos 25 103118 (2015)
  32. Rabinovich M I, Varona P, Tristan I, Afraimovich V S Front. Comput. Neurosci. 8 22 (2014)
  33. Rabinovich M I, Sokolov Yu, Kozma R Front. Syst. Neurosci. 8 220 (2014)
  34. Bick C Phys. Rev. E 97 050201 (2018)
  35. Zhao Y, Pesin Y J. Stat. Phys. 158 447 (2015)
  36. Rabinovich M I, Varona P JAMA Psychiatry 74 771 (2017)
  37. Bick C, Rabinovich M I Phys. Rev. Lett. 103 218101 (2009)
  38. Latorre R, Varona P, Rabinovich M I Neurocomputing 331 108 (2019)
  39. Preller K H et al Proc. Natl. Acad. Sci. USA 116 2743 (2019)
  40. Roopun A K et al Front Neurosci. 2 145 (2008)
  41. Rabinovich M I, Fabrikant A L Zh. Eksp. Teor. Fiz. 77 617 (1979)
  42. Danca M-F Nonlin. Dyn. 86 1263 (2016)
  43. Danca M-F, Kuznetsov N Mathematics 9 652 (2021)
  44. Danca M-F, Kuznetsov N, Chen G Nonlin. Dyn. 88 791 (2017)
  45. Taylor R P et al Front. Hum. Neurosci. 5 60 (2011)
  46. Strelkova G I, Anishchenko V S Usp. Fiz. Nauk 190 160 (2020); Strelkova G I, Anishchenko V S Phys. Usp. 63 145 (2020)
  47. Rabinovich M I, Varona P Front. Comput. Neurosci. 12 73 (2018)
  48. Rabinovich M I, Varona P Biomimetic and Biohybrid Systems. First Intern. Conf., Living Machines 2012, Barcelona, Spain, July 9 - 12, 2012. Proc. (Lecture Notes in Computer Science) Vol. 7375 (Eds T J Prescott et al) (Berlin: Springer, 2012) p. 228
  49. Ivanitskii G R Usp. Fiz. Nauk 188 965 (2018); Ivanitskii G R Phys. Usp. 61 871 (2018)
  50. Doronina-Amitonova L V i dr Usp. Fiz. Nauk 185 371 (2015); Doronina-Amitonova L V et al Phys. Usp. 58 345 (2015)
  51. Ivanitskii G R Usp. Fiz. Nauk 189 759 (2019); Ivanitskii G R Phys. Usp. 62 711 (2019)
  52. Ivanitskii G R, Morozov A A Usp. Fiz. Nauk 190 1165 (2020); Morozov A A Phys. Usp. 63 1092 (2020)
  53. Tomsett R et al Patterns 1 100049 (2020)
  54. Khramov A E i dr Usp. Fiz. Nauk 191 614 (2021); Hramov A E et al Phys. Usp. 64 584 (2021)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions