Issues

 / 

2021

 / 

July

  

Reviews of topical problems


Formation and properties of metallic atomic chains and wires

  a, b,   a,  a, §  a
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina, 4, Moscow, 119991, Russian Federation

We discuss the current state of a promising area of modern physics, the study of the physical properties of metal nanowires and atomic chains. One-dimensional nanostructures are attractive because of both the promise of their practical applications and the possibility of using them to test various theoretical models and approaches by comparing theoretical results with experimental data. We describe experimental conditions under which metal nanowires form on metal and semiconductor surfaces. We give special attention to theoretical models describing the scenario of nanowire growth on various surfaces. We analyze the main experimentally determined factors that affect the distribution of nanowire lengths. We show that the distribution of nanowire lengths on metal and semiconductor surfaces depends not only on external parameters but also on the formation time. We consider the magnetic properties of finite-length atomic chains located on the surfaces of metal and semiconductor crystals. We demonstrate a correlation among the structural, electronic, and magnetic properties of nanowires. We elucidate the effect that nanowires exert on the electronic properties of the surface on which they form. The nature of edge states is explained. The electron states of nanowire atoms are shown to be sensitive to the nanowire length. We discuss the Rashba effect for metal nanowires on a semiconductor surface and analyze how the exchange energy between atoms and the magnetic anisotropy energy affect the macroscopic characteristics of nanowires, such as their critical temperature and the time of spontaneous magnetization reversal.

Fulltext pdf (1.9 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038789
Keywords: atomic wire, metallic chain, quantum conductivity, Rashba effect, nanomagnetism, spintronics, edge state, epitaxial growth
PACS: 05.10.Ln, 61.46.−w, 68.55.A−, 68.65.−k, 73.63.Rt, 75.75.−c (all)
DOI: 10.3367/UFNe.2020.06.038789
URL: https://ufn.ru/en/articles/2021/7/b/
000702491600002
2-s2.0-85116865272
2021PhyU...64..671S
Citation: Syromyatnikov A G, Kolesnikov S V, Saletsky A M, Klavsyuk A L "Formation and properties of metallic atomic chains and wires" Phys. Usp. 64 671–701 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, May 2020, revised: 11th, June 2020, 13th, June 2020

Оригинал: Сыромятников А Г, Колесников С В, Салецкий А М, Клавсюк А Л «Формирование и свойства металлических атомных цепочек и проводов» УФН 191 705–737 (2021); DOI: 10.3367/UFNr.2020.06.038789

References (232) Cited by (15) Similar articles (20) ↓

  1. A.L. Klavsyuk, A.M. Saletsky “Formation and properties of metallic atomic contacts58 933–951 (2015)
  2. A.A. Pervishko, D.I. Yudin “Microscopic approach to the description of spin torques in two-dimensional Rashba ferromagnets and antiferromagnets65 215–226 (2022)
  3. S.A. Nikitov, A.R. Safin et alDielectric magnonics: from gigahertz to terahertz63 945–974 (2020)
  4. S.M. Stishov, A.E. Petrova “Thermodynamic, elastic, and electronic properties of substances with a chiral crystal structure: MnSi, FeSi, and CoSi66 576–585 (2023)
  5. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  6. Yu.B. Kudasov, A.S. Korshunov et alFrustrated lattices of Ising chains55 1169–1191 (2012)
  7. S.M. Stishov, A.E. Petrova “Itinerant helimagnet MnSi54 1117–1130 (2011)
  8. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transport54 1007–1059 (2011)
  9. R.A. Andrievski “High-melting point compounds: new approaches and new results60 276–289 (2017)
  10. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensors60 1236–1267 (2017)
  11. A.G. Semenov, A.D. Zaikin “Superconducting quantum fluctuations in one dimension65 883–919 (2022)
  12. R.S. Berry, B.M. Smirnov “Phase transitions in various kinds of clusters52 137–164 (2009)
  13. A.D. Pogrebnyak, M.A. Lisovenko et alProtective coatings with nanoscale multilayer architecture: current state and main trends64 253–279 (2021)
  14. G.E. Abrosimova, D.V. Matveev, A.S. Aronin “Nanocrystal formation in homogeneous and heterogeneous amorphous phases65 227–244 (2022)
  15. V.V. Val’kov, D.M. Dzebisashvili et alSpin-polaron concept in the theory of normal and superconducting states of cuprates64 641–670 (2021)
  16. D.V. Kazantsev, E.V. Kuznetsov et alApertureless near-field optical microscopy60 259–275 (2017)
  17. Yu.M. Shukrinov “Anomalous Josephson effect65 317–354 (2022)
  18. P.N. Zakharov, V.K. Arzhanik et alMicrotubule: a dynamically unstable stochastic phase switching polymer59 773–786 (2016)
  19. A.I. Volokitin, B.N.J. Persson “Radiative heat transfer and noncontact friction between nanostructures50 879–906 (2007)
  20. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systems55 325–355 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions