Issues

 / 

2021

 / 

April

  

Reviews of topical problems


Francisites as new geometrically frustrated quasi-two-dimensional magnets

 a,  a,  a,  a,  a,  a, b, c
a Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
b National University of Science and Technology ‘MISIS’, Leninskii prosp. 4, Moscow, 119049, Russian Federation
c South Ural State University, Lenin prospekt 76, Chelyabinsk, 454080, Russian Federation

The synthesis of new geometrically frustrated layered systems has fueled experimental work and progress in building models of low-dimensional magnetism. Compounds with the structure of the francisite mineral, Cu3Bi(SeO3)2O2Cl, are quasi-two-dimensional antiferromagnets with a kagome-type lattice. With the dominant ferromagnetic interaction in the layer and a weak interlayer antiferromagnetic bond, the main non-collinear state of francisite is easily destroyed by an external magnetic field, which opens the possibility of reversible switching between states with the minimum and maximum possible magnetization. In the region of metamagnetic transition, multiferroelectric effects and broadband absorption of electromagnetic waves are observed. The implantation of rare-earth ions R into the Bi position is accompanied by spin-reorientation phase transitions in Cu3R(SeO3)2O2X compounds, where X=Cl, Br.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.05.038773
Keywords: francisite, low-dimensional and frustrated magnetism, metamagnetism, multiferroics
PACS: 61.50.−f, 75.10.Jm, 75.25.-j (all)
DOI: 10.3367/UFNe.2020.05.038773
URL: https://ufn.ru/en/articles/2021/4/b/
000691278000002
2-s2.0-85110598764
2021PhyU...64..344M
Citation: Markina M M, Berdonosov P S, Dolgikh V A, Zakharov K V, Kuznetsova E S, Vasil’ev A N "Francisites as new geometrically frustrated quasi-two-dimensional magnets" Phys. Usp. 64 344–356 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 17th, March 2020, revised: 4th, May 2020, 22nd, May 2020

Оригинал: Маркина М М, Бердоносов П С, Долгих В А, Захаров К В, Кузнецова Е С, Васильев А Н «Франциситы как новые геометрически фрустрированные квазидвумерные магнетики» УФН 191 358–371 (2021); DOI: 10.3367/UFNr.2020.05.038773

References (50) Cited by (11) Similar articles (20) ↓

  1. Yu.B. Kudasov, A.S. Korshunov et alFrustrated lattices of Ising chainsPhys. Usp. 55 1169–1191 (2012)
  2. R.Z. Levitin, A.S. Markosyan “Itinerant metamagnetismSov. Phys. Usp. 31 730–749 (1988)
  3. M.F. Sarry “Analytical methods of calculating correlation functions in quantum statistical physicsSov. Phys. Usp. 34 (11) 958–979 (1991)
  4. S.G. Ovchinnikov, V.V. Rudenko “Anisotropic interactions in magnetic crystals with S-state ions. NanostructuresPhys. Usp. 57 1180–1198 (2014)
  5. V.V. Lider “Precise determination of crystal lattice parametersPhys. Usp. 63 907–928 (2020)
  6. G.V. Smirnov “Coherent nuclear fluorescence: synchrotron Mössbauer radiationPhys. Usp. 67 272–291 (2024)
  7. Yu.G. Poltavtsev “Structure of semiconductors in noncrystalline statesSov. Phys. Usp. 19 969–987 (1976)
  8. A.A. Grib, E.V. Damaskinskii, V.M. Maksimov “The problem of symmetry breaking and in variance of the vacuum in quantum field theorySov. Phys. Usp. 13 798–815 (1971)
  9. R.I. Garber, A.I. Fedorenko “Focusing of atomic collisions in crystalsSov. Phys. Usp. 7 479–507 (1965)
  10. Yu.S. Terminasov, L.V. Tuzov “Double reflections of X Rays in crystalsSov. Phys. Usp. 7 434–456 (1964)
  11. A.N. Vasil’ev, V.D. Buchel’nikov et alShape memory ferromagnetsPhys. Usp. 46 559–588 (2003)
  12. Ya.S. Lyakhova, G.V. Astretsov, A.N. Rubtsov “Mean-field concept and post-DMFT methods in the modern theory of correlated systemsPhys. Usp. 66 775–793 (2023)
  13. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructuresPhys. Usp. 56 105–122 (2013)
  14. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithographyPhys. Usp. 56 643–682 (2013)
  15. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical propertiesPhys. Usp. 54 227–258 (2011)
  16. L.T. Adzhemyan, N.V. Antonov, A.N. Vasil’ev “Quantum field renormalization group in the theory of fully developed turbulencePhys. Usp. 39 1193–1219 (1996)
  17. V.D. Buchel’nikov, A.N. Vasil’ev “Electromagnetic generation of ultrasound in ferromagnetsSov. Phys. Usp. 35 (3) 192–211 (1992)
  18. E.Z. Valiev “Phenomenological theory of magnetoelastic interactions in Invars and ElinvarsSov. Phys. Usp. 34 (8) 685–704 (1991)
  19. A.N. Vasil’ev, Yu.P. Gaidukov “Electromagnetic excitation of sound in metalsSov. Phys. Usp. 26 952–973 (1983)
  20. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applicationsPhys. Usp. 61 2–28 (2018)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions