Issues

 / 

2021

 / 

February

  

Physics of our days


Planckian relaxation delusion in metals


Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation

We present a critical review of recent attempts to introduce a new quantum ('Planckian') limit for the temperature dependence of the inelastic scattering rate of electrons in metals. We briefly discuss the main experimental facts and some simple theoretical models explaining the linear-in-temperature growth of resistivity (starting from very low temperatures) in superconducting cuprates and some similar systems. There is no commonly accepted theoretical explanation for such behavior up to now. We also discuss the known quantum limits for electrical conductivity (resistance). It is shown that the universal Planckian limit for the inelastic relaxation rate proposed in some papers is a kind of delusion related to a certain procedure to represent the experimental data.

Fulltext pdf (792 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.08.038821
Keywords: resistivity of metals, relaxation time, effective mass, quantum fluctuations, high-temperature superconductors
PACS: 72.10.Di, 72.15.Cz, 72.15.Lh (all)
DOI: 10.3367/UFNe.2020.08.038821
URL: https://ufn.ru/en/articles/2021/2/d/
000644699500004
2-s2.0-85105406792
2021PhyU...64..175S
Citation: Sadovskii M V "Planckian relaxation delusion in metals" Phys. Usp. 64 175–190 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 5th, August 2020, 19th, August 2020

Оригинал: Садовский М В «Иллюзия планковской релаксации в металлах» УФН 191 182–198 (2021); DOI: 10.3367/UFNr.2020.08.038821

References (60) ↓ Cited by (13) Similar articles (5)

  1. Batlogg B Phys. Today 44 (6) 44 (1991)
  2. Iye Y Physical Properties Of High Temperature Superconductors III (Ed. D M Ginsberg) (Singapore: World Scientific, 1992) p. 285
  3. Bruin J A N et al Science 339 804 (2013)
  4. Legros A et al Nat. Phys. 15 142 (2019)
  5. Zaanen J Nature 430 512 (2004)
  6. Ziman J M Electrons And Phonons; The Theory Of Transport Phenomena In Solid (Oxford: Clarendon Press, 1960); Per. na russk. yaz., Zaiman Dzh Elektrony i Fonony: Teoriya Yavlenii Perenosa v Tverdykh Telakh (M.: IL, 1962)
  7. Meißner W Handbuch Der Experimentalphysik Vol. 11, Pt. 2 (Leipzig: Akad. Verlagsgesellschaft, 1935) p. 338
  8. Maksimov E G Usp. Fiz. Nauk 170 1033 (2000); Maksimov E G Phys. Usp. 43 965 (2000)
  9. Martin S et al Phys. Rev. B 41 846(R) (1990)
  10. Shaginyan V R, Popov K G, Khodel V A Phys. Rev. B 88 115103 (2013)
  11. Shaginyan V R et al Pis’ma ZhETF 110 266 (2019); Shaginyan V R et al JETP Lett. 110 290 (2019)
  12. Patel A A, Sachdev S Phys. Rev. Lett. 123 066601 (2019)
  13. Volovik G E Pis’ma ZhETF 110 335 (2019); Volovik G E JETP Lett. 110 352 (2019)
  14. Zaanen J Nature 448 1000 (2007)
  15. Hartnoll S A Nat. Phys. 11 54 (2015)
  16. Herzog C P et al Phys. Rev. D 75 085020 (2007)
  17. Hartnoll S A et al Phys. Rev. B 76 144502 (2007)
  18. Sadovskii M V Diagrammatika: Lektsii Po Izbrannym Zadacham Teorii Kondensirovannogo Sostoyaniya (M.-Izhevsk: In-t komp’yut. issled. RKhD, 2019); Per. na angl. yaz., Sadovskii M V Diagrammatics: Lectures On Selected Problems In Condensed Matter Theory (Singapore: World Scientific, 2019)
  19. Ioffe A F, Regel A R Progress In Semiconductors Vol. 4 (London: Heywood, 1960) p. 237
  20. Mott N F Metal - Insulator Transitions (London: Taylor and Francis, 1974); Per. na russk. yaz., Mott N F Perekhody Metall - Izolyator (M.: Nauka, 1979)
  21. Abrahams E et al Phys. Rev. Lett. 42 673 (1979)
  22. Sadovskii M V Usp. Fiz. Nauk 133 223 (1981); Sadovskii M V Sov. Phys. Usp. 24 96 (1981)
  23. Vollhardt D, Wölfle P Electronic Phase Transitions (Modern Problems in Condensed Matter Sciences) Vol. 32 (Eds W Hanke, Yu V Kopaev) (Amsterdam: North-Holland, 1992) p. 1
  24. Markoš P Acta Phys. Slovaca 56 561 (2006)
  25. Gantmakher V F Elektrony v Neuporyadochennykh Sredakh (M.: Fizmatlit, 2013); Per. na angl. yaz., Gantmakher V F Electrons And Disorder In Solids (Oxford: Clarendon Press, 2005)
  26. Mooij J H Phys. Status Solidi A 17 521 (1973)
  27. Gurvitch M, Fiory A T Phys. Rev. Lett. 59 1337 (1987)
  28. Takagi H et al Phys. Rev. Lett. 69 2975 (1992)
  29. Hussey N E (II), Takenaka K, Takagi H Philos. Mag. 84 2847 (2004)
  30. Poniatowski N R et al Phys. Rev. B 103 L020501 (2021); Poniatowski N R et al arXiv:2007.03685
  31. Zaanen J, unpulished talks
  32. Allen P B, Mitrović B Solid State Physics Vol. 37 (Eds H Ehrenreich, F Seitz, D Turnbull) (New York: Academic Press, 1983) p. 1
  33. Allen P B Phys. Rev. B 3 305 (1971)
  34. Savrasov S Y, Savrasov D Y Phys. Rev. B 54 16487 (1996)
  35. Sadovskii M V Pis’ma ZhETF 111 203 (2020); Sadovskii M V JETP Lett. 111 188 (2020)
  36. Pines D The Many-Body Problem (New York: W.A. Benjamin, 1961); Per. na russk. yaz., Pains D Problema Mnogikh Tel (M.: IL, 1963)
  37. Abrikosov A A, Gor’kov L P, Dzyaloshinskii I E Metody Kvantovoi Teorii Polya v Statisticheskoi Fizike (M.: Fizmatgiz, 1962); Abrikosov A A, Gor’kov L P, Dzyaloshinskii I E Metody Kvantovoi Teorii Polya v Statisticheskoi Fizike (M.: Dobrosvet, 1998); Per. na angl. yaz., Abrikosov A A, Gorkov L P, Dzyaloshinski I E Methods Of Quantum Field Theory In Statistical Physics (Englewood Cliffs, N.J.: Prentice-Hall, 1963)
  38. Pines D, Nozières P The Theory Of Quantum Liquids Vol. 1 (New York: W.A. Benjamin, 1966); Per. na russk. yaz., Pains D, Noz’er F Teoriya Kvantovykh Zhidkostei (M.: Mir, 1967)
  39. Ziman J M Models Of Disorder: The Theoretical Physics Of Homogeneously Disordered Systems (Cambridge: Cambridge Univ. Press, 1979); Per. na russk. yaz., Zaiman Dzh Modeli Besporyadka: Teoreticheskaya Fizika Odnorodno Neuporyadochennykh Sistem (M.: Mir, 1982)
  40. Edwards S F Philos. Mag. 6 617 (1961)
  41. Edwards S F Proc. R. Soc. Lond. A 267 518 (1962)
  42. Proust C, Taillefer L Annu. Rev. Condens. Matter Phys. 10 409 (2019)
  43. Sachdev S Quantum Phase Transitions (Cambridge: Cambridge Univ. Press, 1999)
  44. Stishov S M Usp. Fiz. Nauk 174 853 (2004); Stishov S M Phys. Usp. 47 789 (2004)
  45. Sadovskii M V Usp. Fiz. Nauk 171 539 (2001); Sadovskii M V Phys. Usp. 44 515 (2001)
  46. Sadovskii M V Struny, Brany, Reshetki, Setki, Psevdoshcheli i Pylinki: Trudy Seminara Im. I.E. Tamma (Nauch. red.: M A Vasil’ev, L V Keldysh, A M Semikhatov) (M.: Nauchnyi mir, 2007) p. 357; Sadovskii M V cond-mat/0408489
  47. Kuchinskii E Z, Nekrasov I A, Sadovskii M V Usp. Fiz. Nauk 182 345 (2012); Kuchinskii E Z, Nekrasov I A, Sadovskii M V Phys. Usp. 55 325 (2012)
  48. Varma C M Rev. Mod. Phys. 92 031001 (2020)
  49. Sadovskii M V Phys. Rep. 282 225 (1997)
  50. Sadovskii M V Superconductivity And Localization (Singapore: World Scientific, 2000)
  51. Fukuyama H, Ebisawa H, Wada Y Prog. Theor. Phys. 42 494 (1969)
  52. Nakajima S, Watabe M Prog. Theor. Phys. 29 341 (1963)
  53. Prange R E, Kadanoff L P Phys. Rev. 134 A566 (1964)
  54. Heine V, Nozières P, Wilkins J W Philos. Mag. 13 741 (1966)
  55. Grimvall G Phys. Scripta 14 63 (1976)
  56. Esterlis I et al Phys. Rev. B 97 140501(R) (2018)
  57. Chubukov A V et al Ann. Physics 417 168190 (2020)
  58. Cao Y et al Phys. Rev. Lett. 124 076801 (2020)
  59. Mousatov C H, Berg E, Hartnoll S A Proc. Natl. Acad. Sci. USA 117 2852 (2020)
  60. Hwang E H, Das Sarma S Phys. Rev. B 99 085105 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions