Reviews of topical problems

Large quantum networks

University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

Quantum networks that allow generating entangled states between distant qubits have enormous scientific and applied potential. They can be used for secure quantum cryptography and the teleportation of quantum states between cities and countries, in high-resolution astronomy, and in distributed quantum computing. The scattering of photons in an optical fiber and the difficulties in creating full-fledged quantum nodes impede the construction of large quantum networks. We review current approaches to the creation of such networks, with the emphasis on quantum repeaters intended for `compensating' losses in optical fibers. We also discuss methods for increasing the range of quantum cryptography systems without using quantum repeaters.

Typically, an English fulltext is available in about 3 months from the date of publication of the original article.

Keywords: quantum network, quantum cryptography, quantum repeater
PACS: 03.65.Ud, 03.67.−a, 42.50.Ex (all)
DOI: 10.3367/UFNe.2020.11.038888
Citation: Sukachev D D "Large quantum networks" Phys. Usp. 64 1021–1037 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, June 2020, revised: 26th, November 2020, 26th, November 2020

:    « » 191 1077–1094 (2021); DOI: 10.3367/UFNr.2020.11.038888

References (251) Similar articles (20) ↓

  1. K.A. Valiev “Quantum computers and quantum computations48 1–36 (2005)
  2. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applications60 539–558 (2017)
  3. I.V. Bargatin, B.A. Grishanin, V.N. Zadkov “Entangled quantum states of atomic systems44 597–616 (2001)
  4. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  5. A.V. Belinskii, D.N. Klyshko “Interference of light and Bell’s theorem36 (8) 653–693 (1993)
  6. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticles64 990–1020 (2021)
  7. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonics61 1035–1050 (2018)
  8. S.Ya. Kilin “Quantum information42 435–452 (1999)
  9. A.A. Grib “Bell’s inequalities and experimental verification of quantum correlations at macroscopic distances27 284–293 (1984)
  10. B.I. Spasskii, A.V. Moskovskii “Nonlocality in quantum physics27 273–283 (1984)
  11. O.V. Misochko “Nonclassical states of lattice excitations: squeezed and entangled phonons56 868–882 (2013)
  12. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications61 2–28 (2018)
  13. M.B. Menskii “Concept of consciousness in the context of quantum mechanics48 389–409 (2005)
  14. A.E. Krasnok, I.S. Maksymov et alOptical nanoantennas56 539–564 (2013)
  15. V.M. Pudalov “Measurements of the magnetic properties of conduction electrons64 3–27 (2021)
  16. V.M. Murav’ev, I.V. Kukushkin “Collective plasma excitations in two-dimensional electron systems63 975–993 (2020)
  17. N.I. Kashirina, V.D. Lakhno “Large-radius bipolaron and the polaron-polaron interaction53 431–453 (2010)
  18. D.N. Klyshko “Basic quantum mechanical concepts from the operational viewpoint41 885–922 (1998)
  19. V.I. Balykin “Plasmon nanolaser: current state and prospects61 846–870 (2018)
  20. V.D. Lakhno “Pekar's ansatz and the strong coupling problem in polaron theory58 295–308 (2015)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions