Issues

 / 

2021

 / 

October

  

Reviews of topical problems


Large quantum networks

 
University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

Quantum networks that allow generating entangled states between distant qubits have enormous scientific and applied potential. They can be used for secure quantum cryptography and the teleportation of quantum states between cities and countries, in high-resolution astronomy, and in distributed quantum computing. The scattering of photons in an optical fiber and the difficulties in creating full-fledged quantum nodes impede the construction of large quantum networks. We review current approaches to the creation of such networks, with the emphasis on quantum repeaters intended for `compensating' losses in optical fibers. We also discuss methods for increasing the range of quantum cryptography systems without using quantum repeaters.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.11.038888
Keywords: quantum network, quantum cryptography, quantum repeater
PACS: 03.65.Ud, 03.67.−a, 42.50.Ex (all)
DOI: 10.3367/UFNe.2020.11.038888
URL: https://ufn.ru/en/articles/2021/10/c/
000740826300003
2-s2.0-85123456910
Citation: Sukachev D D "Large quantum networks" Phys. Usp. 64 1021–1037 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 9th, June 2020, revised: 26th, November 2020, 26th, November 2020

Оригинал: Сукачёв Д Д «Протяжённые квантовые сети» УФН 191 1077–1094 (2021); DOI: 10.3367/UFNr.2020.11.038888

References (251) Cited by (22) Similar articles (20) ↓

  1. A.P. Alodjants, D.V. Tsarev et alQuantum optical metrologyPhys. Usp. 67 668–693 (2024)
  2. K.A. Valiev “Quantum computers and quantum computationsPhys. Usp. 48 1–36 (2005)
  3. V.A. Vozhakov, M.V. Bastrakova et alState control in superconducting quantum processorsPhys. Usp. 65 421–439 (2022)
  4. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospectsPhys. Usp. 61 1139–1174 (2018)
  5. A.V. Belinskii, D.N. Klyshko “Interference of light and Bell’s theoremPhys. Usp. 36 (8) 653–693 (1993)
  6. E.A. Ekimov, M.V. Kondrin “Vacancy-impurity centers in diamond: perspectives of synthesis and applicationsPhys. Usp. 60 539–558 (2017)
  7. M.A. Semina, R.A. Suris “Localized excitons and trions in semiconductor nanosystemsPhys. Usp. 65 111–130 (2022)
  8. S.Ya. Kilin “Quantum informationPhys. Usp. 42 435–452 (1999)
  9. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticlesPhys. Usp. 64 990–1020 (2021)
  10. I.V. Bargatin, B.A. Grishanin, V.N. Zadkov “Entangled quantum states of atomic systemsPhys. Usp. 44 597–616 (2001)
  11. Yu.V. Vladimirova, V.N. Zadkov “Quantum optics of quantum emitters in the near field of a nanoparticlePhys. Usp. 65 245–269 (2022)
  12. B.M. Karnakov, V.D. Mur et alCurrent progress in developing the nonlinear ionization theory of atoms and ionsPhys. Usp. 58 3–32 (2015)
  13. Z.D. Kvon, D.A. Kozlov et alTopological insulators based on HgTePhys. Usp. 63 629–647 (2020)
  14. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applicationsPhys. Usp. 65 567–596 (2022)
  15. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonicsPhys. Usp. 61 1035–1050 (2018)
  16. V.G. Veselago “The electrodynamics of substances with simultaneously negative values of ε and μSov. Phys. Usp. 10 509–514 (1968)
  17. A.A. Grib “Bell’s inequalities and experimental verification of quantum correlations at macroscopic distancesSov. Phys. Usp. 27 284–293 (1984)
  18. B.I. Spasskii, A.V. Moskovskii “Nonlocality in quantum physicsSov. Phys. Usp. 27 273–283 (1984)
  19. V.V. Klimov “Optical nanoresonatorsPhys. Usp. 66 263–287 (2023)
  20. O.V. Misochko “Nonclassical states of lattice excitations: squeezed and entangled phononsPhys. Usp. 56 868–882 (2013)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions