Issues

 / 

2021

 / 

January

  

Instruments and methods of investigation


QEXAFS method implementation using adaptive X-ray optical elements

 a, b,  a, b,  a, b,  b,  a, b,  b,  a, b,  b,  a, b
a Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, Leninskii prosp 59, Moscow, 119333, Russian Federation
b National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation

A modification of the of high-speed high-resolution X-ray absorption spectroscopy (Quick Extended X-ray Absorption Fine Structure, QEXAFS) method based on an adaptive bending element of X-ray optics is described. This technique was implemented at the Langmuir station of the Kurchatov Synchrotron Radiation Source (KISI-Kurchatov). The absorption spectrum of a model sample, bromine in a sodium bromide compound, was recorded. A recording speed up to 5 seconds per spectrum was achieved in the continuously recording regime. The method is applicable for obtaining information about both the structure and dynamics of a wide range of objects, ordered and disordered, in any aggregate state.

Fulltext pdf (920 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.06.038779
Keywords: time-resolved research methods, X-ray absorption spectroscopy, QEXAFS
PACS: 07.85.Ne, 07.85.Qe, 61.05.cj (all)
DOI: 10.3367/UFNe.2020.06.038779
URL: https://ufn.ru/en/articles/2021/1/e/
000632470400004
2-s2.0-85104175109
2021PhyU...64...83P
Citation: Protsenko A I, Blagov A E, Pisarevskii Yu V, Rogachev A V, Targonsky A V, Trigub A L, Eliovich I A, Yakunin S N, Kovalchuk M V "QEXAFS method implementation using adaptive X-ray optical elements" Phys. Usp. 64 83–87 (2021)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, May 2020, revised: 5th, June 2020, 10th, June 2020

Оригинал: Проценко А И, Благов А Е, Писаревский Ю В, Рогачев А В, Таргонский А В, Тригуб А Л, Элиович Я А, Якунин С Н, Ковальчук М В «Реализация метода QEXAFS с использованием адаптивных элементов рентгеновской оптики» УФН 191 88–92 (2021); DOI: 10.3367/UFNr.2020.06.038779

References (20) ↓ Cited by (9) Similar articles (6)

  1. Kulipanov G N, Skrinskii A N Usp. Fiz. Nauk 122 369 (1977); Kulipanov G N, Skrinskii A N Sov. Phys. Usp. 20 559 (1977)
  2. Rowe E M, Weaver J H Sci. Am. 236 (6) 32 (1977); Per. na russk. yaz., Rouv E, Uiver Dzh Usp. Fiz. Nauk 126 269 (1978)
  3. Frahm R Nucl. Instrum. Meth. Phys. Res. A 270 578 (1988)
  4. Müller O et al J. Synchrotron Rad. 23 260 (2016)
  5. Richwin M et al J. Synchrotron Rad. 8 354 (2001)
  6. Bornebusch H et al J. Synchrotron Rad. 6 209 (1999)
  7. Lützenkirchen-Hecht D, Grundmann S, Frahm R J. Synchrotron Rad. 8 6 (2001)
  8. Frahm R, Stötzel J, Lützenkirchen-Hecht D Synchrotron Rad. News 22 (2) 6 (2009)
  9. Frahm R et al AIP Conf. Proc. 1234 251 (2010)
  10. Fonda E et al J. Synchrotron Rad. 19 417 (2012)
  11. Khalid S et al Nucl. Instrum. Meth. Phys. Res. A 649 64 (2011)
  12. Nonaka T et al Rev. Sci. Instrum. 83 083112 (2012)
  13. Blagov A E i dr Zh. Eksp. Teor. Fiz. 128 893 (2005); Blagov A E et al J. Exp. Theor. Phys. 101 770 (2005)
  14. Blagov A E i dr Akust. Zhurn. 59 561 (2013); Blagov A E et al Acoust. Phys. 59 506 (2013)
  15. Blagov A E i dr Kristallogr. 62 870 (2017); Blagov A E et al Crystallogr. Rep. 62 831 (2017)
  16. Blagov A E i dr Prib. Tekh. Eksp. (5) 109 (2016); Blagov A E et al Instrum. Exp. Techn. 59 728 (2016)
  17. Bykov A S i dr Izv. Vuzov Materialy Elektronnoi Tekhniki 4 3 (2014); Bykov A S et al Russ. Microelectron. 43 536 (2014)
  18. Nakamura K, Shimizu H Ferroelectrics 93 211 (1989)
  19. Kulikov A et al Sensors Actuators A 291 68 (2019)
  20. Marchenkov N et al Sensors Actuators A 293 48 (2019)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions