Issues

 / 

2020

 / 

July

  

Reviews of topical problems


Field emission from carbon nanostructures: models and experiment

 a, b, c,  c
a Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation
b St. Petersburg Chemical-Pharmaceutical Academy, ul. prof. Popova 14, St. Petersburg, 197376, Russian Federation
c Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya st. 29, St. Petersburg, 195251, Russian Federation

Models of field (cold, autoelectron) emission from various types of carbon nanostructures, other than graphene, are described. The experimental results are compared with theoretical predictions.

Fulltext pdf (860 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.06.038576
Keywords: carbon nanostructures, field emission properties, field emission models, emission threshold, emitters, cathodes for emission devices
PACS: 71.38.Ht, 73.63.−b, 79.70.+q (all)
DOI: 10.3367/UFNe.2019.06.038576
URL: https://ufn.ru/en/articles/2020/7/b/
000575189200002
2-s2.0-85092467557
2020PhyU...63..648E
Citation: Eidelman E D, Arkhipov A V "Field emission from carbon nanostructures: models and experiment" Phys. Usp. 63 648–667 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, April 2019, revised: 31st, May 2019, 5th, June 2019

Оригинал: Эйдельман Е Д, Архипов А В «Полевая эмиссия из углеродных наноструктур: модели и эксперимент» УФН 190 693–714 (2020); DOI: 10.3367/UFNr.2019.06.038576

References (183) ↓ Cited by (15) Similar articles (20)

  1. Fowler R H, Nordheim L Proc. R. Soc. Lond. A 119 173 (1928)
  2. Stratton R Phys. Rev. 125 67 (1962)
  3. Elinson M I, Vasil’ev G F Avtoelektronnaya Emissiya (M.: Fizmatgiz, 1958)
  4. Baskin L M, Lvov O I, Fursey G N Phys. Status Solidi B 47 49 (1971)
  5. Modinos A Solid-State Electron. 45 809 (2001)
  6. Chernozatonskii L A Chem. Phys. Lett. 233 63 (1995)
  7. Gulyaev Yu V i dr Radiotekhnika Elektronika 48 1399 (2003); Gulyaev Yu V et al J. Commun. Technol. Electron. 48 1288 (2003)
  8. Baker F S, Osborn A R, Williams J Nature 239 96 (1972)
  9. Sheshin E P Struktura Poverkhnosti i Avtoemissionnye Svoistva Uglerodnykh Materialov (M.: Izd-vo MFTI. Fizmatkniga, 2001)
  10. Gröning O et al Appl. Phys. Lett. 71 2253 (1997)
  11. Obraztsov A N, Volkov A P, Pavlovskii I Yu Pis’ma ZhETF 68 56 (1998); Obraztsov A N, Volkov A P, Pavlovskii I Yu JETP Lett. 68 59 (1998)
  12. Cui J B, Ristein J, Ley L Phys. Rev. B 60 16135 (1999)
  13. Ralchenko V et al Diamond Relat. Mater. 8 1496 (1999)
  14. Karabutov A V, Frolov V D, Konov V I Diamond Relat. Mater. 10 840 (2001)
  15. Okotrub A V et al Carbon 42 1099 (2004)
  16. Carey J D, Silva S R P Solid-State Electron. 45 1017 (2001)
  17. Orlanducci S et al J. Nanosci. Nanotechnol. 8 3228 (2008)
  18. Koh A T T et al J. Appl. Phys. 110 034903 (2011)
  19. Zhai C X et al Physica B 406 1124 (2011)
  20. Nose K et al J. Vac. Sci. Technol. B 30 011204 (2012)
  21. Tordjman M et al Appl. Phys. Lett. 101 173116 (2012)
  22. Gupta S, Morell G, Weiner B R J. Appl. Phys. 95 8314 (2004)
  23. Xu N S, Ejaz Huq S Mater. Sci. Eng. R 48 47 (2005)
  24. Wang C et al Electron. Lett. 27 1459 (1991)
  25. Obraztsov A N, Pavlovskii I Yu, Volkov A P Zh. Tekh. Fiz. 71 89 (2001); Obraztsov A N, Pavlovskii I Yu, Volkov A P Tech. Phys. 56 87 (2001)
  26. Gröning O et al Solid-State Electron. 45 929 (2001)
  27. Krauss A R et al J. Appl. Phys. 89 2958 (2001)
  28. Xu N S, Tzeng Y, Latham R V J. Phys. D 27 1988 (1994)
  29. Cheah L K et al J. Appl. Phys. 85 6816 (1999)
  30. Rakhimov A T Usp. Fiz. Nauk 170 996 (2000); Rakhimov A T Phys. Usp. 43 926 (2000)
  31. Zakhidov Al A i dr Zh. Eksp. Teor. Fiz. 124 1391 (2003); Zakhidov Al A et al JETP 97 1240 (2003)
  32. Vul’ A Ya, Eidelman E D, Dideikin A T Synthesis, Properties, and Applications of Ultrananocrystalline Diamond. NATO Advanced Research Workshop on Synthesis, Properties and Applications of Ultrananocrystalline Diamond, 2004, Saint Petersburg, Russia (NATO Science Ser., Ser. II) Vol. 192 (Eds D M Gruen, O A Shenderova, A Ya Vul’) (Dordrecht: Springer, 2005) p. 383
  33. Karabutov A V et al J. Vac. Sci. Technol. B 19 965 (2001)
  34. Uppireddi K, Weiner B R, Morell G J. Appl. Phys. 103 104315 (2008)
  35. Obraztsov A N, Kleshch V I, Smolnikova E A Beilstein J. Nanotechnol. 4 493 (2013)
  36. Kleshch V I et al Carbon 81 132 (2015)
  37. Obraztsov A N i dr Zh. Eksp. Teor. Fiz. 120 970 (2001); Obraztsov A N et al JETP 93 846 (2001)
  38. Zakhidov Al A i dr Zh. Eksp. Teor. Fiz. 127 100 (2005); Zakhidov Al A et al JETP 100 89 (2005)
  39. Kleshch V I et al Phys. Status Solidi B 248 2623 (2011)
  40. Smol’nikova E A "Issledovanie strukturnykh i avtoemissionnykh kharakteristik nanografitnykh kholodnykh katodov" Disc. ... kand. fiz.-mat. nauk (M.: Moskovskii gosudarstvennyi universitet im. M.V. Lomonosova, 2015)
  41. Kleshch V I et al Phys. Status Solidi B 255 1700270 (2018)
  42. Arkhipov A V i dr Pis’ma ZhTF 40 (23) 58 (2014); Arkhipov A V et al Tech. Phys. Lett. 40 1065 (2014)
  43. Arkhipov A V et al Fuller. Nanotub. Carbon Nanostruct. 28 286 (2020)
  44. Arkhipov A V i dr Zh. Tekh. Fiz. 86 (12) 135 (2016)
  45. Andronov A et al J. Vac. Sci. Technol. B 36 02C108 (2018)
  46. Gupta S, Weiner B R, Morell G J. Appl. Phys. 91 10088 (2002)
  47. Fursei G N, Petrik V I, Novikov D V Zh. Tekh. Fiz. 79 (7) 122 (2009); Fursey G N, Petrick V I, Novikov D V Tech. Phys. 54 1048 (2009)
  48. Yafarov R K Zh. Tekh. Fiz. 76 (1) 42 (2006); Yafarov R K Tech. Phys. 51 40 (2006)
  49. Yafarov R K Zh. Tekh. Fiz. 88 127 (2018); Yafarov R K Tech. Phys. 63 126 (2018)
  50. Davidovich M V, Yafarov R K Zh. Tekh. Fiz. 88 283 (2018); Davidovich M V, Yafarov R K Tech. Phys. 63 274 (2018)
  51. Pradhan D, Lin I N ACS Appl. Mater. Interfaces 1 1444 (2009)
  52. Karabutov A V et al Surf. Interface Anal. 36 455 (2004)
  53. Arkhipov A V et al J. Phys. Conf. Ser. 100 072047 (2008)
  54. Varshney D et al J. Appl. Phys. 110 044324 (2011)
  55. Zhirnov V V i dr Fiz. Tverd. Tela 46 641 (2004); Zhirnov V V et al Phys. Solid State 46 657 (2004)
  56. Lai S H et al Appl. Phys. Lett. 85 6248 (2004)
  57. Ojima M et al Appl. Phys. Lett. 88 053103 (2006)
  58. Arkhipov A et al J. Nanomater. 2014 190232 (2014)
  59. Guglielmotti V et al Appl. Phys. Lett. 95 222113 (2009)
  60. Vul’ A et al Adv. Sci. Lett. 3 110 (2010)
  61. Uppireddi K, Weiner B R, Morell G J. Vac. Sci. Technol. B 28 1202 (2010)
  62. Park K H, Lee S, Koh K H J. Appl. Phys. 99 034303 (2006)
  63. Popov E O et al J. Vac. Sci. Technol. B 36 02C106 (2018)
  64. Forbes R G et al J. Vac. Sci. Technol. B 22 1222 (2004)
  65. Forbes R G J. Vac. Sci. Technol. B 27 1200 (2009)
  66. Busta H H et al Solid-State Electron. 45 1039 (2001)
  67. Ilie A et al J. Appl. Phys. 88 6002 (2000)
  68. Anikin V M, Goloubentsev A F Solid-State Electron. 45 865 (2001)
  69. Maslov V I Pis’ma ZhTF 33 (24) 76 (2007); Maslov V I Tech. Phys. Lett. 33 1069 (2007)
  70. Arkhipov A V et al St. Petersburg State Polytech. Univ. J. Phys. Math. (4-2) 123 (2013)
  71. Arkhipov A V "Nizkovol’tnaya avtoelektronnaya emissiya iz nanostrukturirovannykh uglerodosoderzhashchikh materialov i pokrytii" Diss. ... dokt. fiz.-mat. nauk (SPb.: Sankt-Peterburgskii politekhnicheskii universitet Petra Velikogo, 2017)
  72. Arkhipov A V i dr Zh. Tekh. Fiz. 75 (10) 104 (2005); Arkhipov A V et al Tech. Phys. 50 1353 (2005)
  73. Arkhipov A V, Mishin M V, Parygin I V Surf. Interface Anal. 39 149 (2007)
  74. Arkhipov A V, Mishin M V Fuller. Nanotub. Carbon Nanostruct. 19 75 (2010)
  75. Arkhipov A V, Gabdullin P G, Mishin M V Fuller. Nanotub. Carbon Nanostruct. 19 86 (2010)
  76. Jarvis J D et al J. Appl. Phys. 108 094322 (2010)
  77. Kolos’ko A G i dr Pis’ma ZhTF 39 (10) 72 (2013); Kolos’ko A G et al Tech. Phys. Lett. 39 484 (2013)
  78. Cole M T et al IEEE Trans. Nanotechnol. 16 11 (2017)
  79. Charbonnier F M et al Phys. Rev. Lett. 13 397 (1964)
  80. Levine P H J. Appl. Phys. 33 582 (1962)
  81. Purcell S T et al Phys. Rev. Lett. 88 105502 (2002)
  82. Reikh K V, Eidel’man E D, Vul’ A Ya Zh. Tekh. Fiz. 77 (7) 123 (2007); Reich K V, Eidelman E D, Vul’ A Ya Tech. Phys. 52 943 (2007)
  83. Pshenichnyuk S A, YumaguzYu M Diamond Relat. Mater. 13 125 (2004)
  84. Fleming G M, Hengerson J E Phys. Rev. 59 907 (1941)
  85. Krauss A R et al J. Appl. Phys. 89 2958 (2001)
  86. Schlesser R et al J. Appl. Phys. 82 5763 (1997)
  87. Schlesser R et al Diamond Relat. Mater. 7 636 (1998)
  88. Yamaguchi H et al Phys. Rev. B 80 165321 (2009)
  89. Bandurin D A et al Appl. Phys. Lett. 106 233112 (2015)
  90. Forbes R G Solid-State Electron. 45 779 (2001)
  91. Ahmed S F, Moon M-W, Lee K-R Appl. Phys. Lett. 92 193502 (2008)
  92. Ilie A et al Appl. Phys. Lett. 76 2627 (2000)
  93. Carey J D et al J. Vac. Sci. Technol. B 21 1633 (2003)
  94. Frolov V D et al Ultramicroscopy 79 209 (1999)
  95. Cheng H-F et al J. Phys. Chem. C 115 13894 (2011)
  96. Smith R C, Silva S R P J. Appl. Phys. 106 014314 (2009)
  97. Smith R C et al Appl. Phys. Lett. 87 013111 (2005)
  98. Spindt C A J. Appl. Phys. 37 3504 (1968)
  99. Fursey G N et al Appl. Surf. Sci. 215 135 (2003)
  100. Dyubua B Ch, Korolev A N Elektronnaya Tekhnika Ser. 1 SVCh-tekhnika (1) 5 (2011)
  101. Bonard J-M et al Carbon 40 1715 (2002)
  102. Tolt Z L et al J. Vac. Sci. Technol. B 26 706 (2008)
  103. Bonard J-M et al Phys. Rev. B 67 115406 (2003)
  104. Popov E O et al J. Vac. Sci. Technol. B 33 03C109 (2015)
  105. Bocharov G S, Eletskii A V Fuller. Nanotub. Carbon Nanostruct. 20 444 (2012)
  106. Glukhova O E et al Appl. Surf. Sci. 215 149 (2003)
  107. Eletskii A V Usp. Fiz. Nauk 180 897 (2010); Eletskii A V Phys. Usp. 53 863 (2010)
  108. Bocharov G S, Eletskii A V Zh. Tekh. Fiz. 77 (4) 107 (2007); Bocharov G S, Eletskii A V Tech. Phys. 52 498 (2007)
  109. Bulyarskii S V i dr Zh. Tekh. Fiz. 88 920 (2018); Bulyarskiy S V et al Tech. Phys. 63 894 (2018)
  110. Egorov N, Sheshin E Field Emission Electronics (Springer Series in Advanced Microelectronics) Vol. 60 (New York: Springer, 2017)
  111. Egorov N V, Sheshin E P Poverkhnost’. Rentgenovskie, Sinkhrotronnye Neitronnye Issledovaniya (3) 5 (2017); Egorov N V, Sheshin E P J. Surf. Investig. X-Ray Synchr. Neutron Tech. 11 285 (2017)
  112. Shen Y et al Adv. Electron. Mater. 3 1700295 (2017)
  113. Katkov V L, Osipov V A Pis’ma ZhETF 90 304 (2009); Katkov V L, Osipov V A JETP Lett. 90 278 (2009)
  114. Zhu M Y et al Carbon 49 2526 (2011)
  115. Takeuchi W et al Appl. Phys. Lett. 98 123107 (2011)
  116. Evlashin S A et al J. Vac. Sci. Technol. B 30 021801 (2012)
  117. Qi J L et al J. Phys. D 43 055302 (2010)
  118. Palnitkar U A et al Appl. Phys. Lett. 97 063102 (2010)
  119. Krivchenko V A et al J. Appl. Phys. 107 014315 (2010)
  120. Huang Y et al Carbon 50 2657 (2012)
  121. Kokkorakis G C, Xanthakis J P Surf. Interface Anal. 39 135 (2007)
  122. Robertson J, Milne W J. Non-Cryst. Solids 227-230 558 (1998)
  123. Binh V T et al Solid-State Electron. 45 1025 (2001)
  124. Vorob’ev L E i dr Kineticheskie i Opticheskie Yavleniya v Sil’nykh Elektricheskikh Polyakh v Poluprovodnikakh i Nanostrukturakh (Pod obshch. red. V I Il’ina, A Ya Shika) (SPb.: Nauka, 2000)
  125. Forbes R G Ultramicroscopy 95 1 (2003)
  126. Cutler P H et al Appl. Surf. Sci. 146 126 (1999)
  127. Amaratunga G A J, Silva S R P Appl. Phys. Lett. 68 2529 (1996)
  128. Geis M W, Twichell J C, Lyszczarz T M J. Vac. Sci. Technol. B 14 2060 (1996)
  129. Geis M W et al Appl. Phys. Lett. 68 2294 (1996)
  130. Koenigsfeld N, Philosoph B, Kalish R Diamond Relat. Mater. 9 1218 (2000)
  131. Okano K et al Nature 381 140 (1996)
  132. Panwar O S, Rupesinghe N, Amaratunga G A J J. Vac. Sci. Technol. B 26 566 (2008)
  133. Zhao W et al Appl. Phys. Lett. 96 092101 (2010)
  134. Robertson J J. Vac. Sci. Technol. B 17 659 (1999)
  135. Baskin L M, Neittaanmyaki P, Plamenevskii B A Zh. Tekh. Fiz. 80 (12) 86 (2010); Baskin L M, Neittaanmäki P, Plamenevskii B A Tech. Phys. 55 1793 (2010)
  136. Obraztsov A N et al Electronic Properties of Syntetic Nanostructures. XVIII Intern. Winterschool/Euroconf. on Electronic Properties of Novel Materials, 6-13 March, 2004, Kirchberg, Austria (AIP Conf. Proc.) Vol. 723 (Eds H Kuzmany et al) (Melville, NY: American Institute of Physics, 2004) p. 490
  137. Frolov V D et al Appl. Phys. A 78 21 (2004)
  138. Carey J D et al Appl. Phys. Lett. 77 2006 (2000)
  139. Xu J et al J. Appl. Phys. 91 5434 (2002)
  140. Huang P-C et al J. Appl. Phys. 109 084309 (2011)
  141. Arkhipov A V et al J. Nano- Electron. Phys. 8 02058 (2016)
  142. Katkov V L, Osipov V A Fiz. Elem. Chast. At. Yad. 41 1916 (2010); Katkov V L, Osipov V A Phys. Part. Nucl. 41 1027 (2010)
  143. Cui J B, Robertson J, Milne W I J. Appl. Phys. 89 5707 (2001)
  144. Litovchenko V et al J. Appl. Phys. 96 867 (2004)
  145. Reich K V, Eidelman E D Europhys. Lett. 85 47007 (2009)
  146. Babenko A Yu, Dideikin A T, Eidel’man E D Fiz. Tverd. Tela 51 410 (2009); Babenko A Yu, Dideykin A T, Eidelman E D Phys. Solid State 51 435 (2009)
  147. Zheng X et al Phys. Rev. Lett. 92 106803 (2004)
  148. Peng J et al J. Appl. Phys. 104 014310 (2008)
  149. Forbes R G J. Vac. Sci. Technol. B 28 C2A43 (2010)
  150. Reikh K V i dr Zh. Tekh. Fiz. 78 (2) 119 (2008); Reich K V et al Tech. Phys. 53 261 (2008)
  151. Schlesser R et al Diamond Relat. Mater. 7 636 (1998)
  152. Lee K-R et al Thin Solid Films 290-291 171 (1996)
  153. Zhu W, Kochanski G P, Jin S Science 282 1471 (1998)
  154. Wächer R et al Diamond Relat. Mater. 7 687 (1998)
  155. Cheng H-F et al Appl. Surf. Sci. 142 504 (1999)
  156. Umehara Y et al Diamond Relat. Mater. 11 1429 (2002)
  157. Dideykin A T, Eidelman E D, Vul’ A Ya Solid State Commun. 126 495 (2003)
  158. Eydelman E D, Vul’ A Ya J. Phys. Condens. Matter 19 266210 (2007)
  159. Eidel’man E D Zh. Tekh. Fiz. 89 1491 (2019); Eidelman E D Tech. Phys. 64 1409 (2019)
  160. Koniakhin S V, Eidelman E D Europhys. Lett. 103 37006 (2013)
  161. Shakhov F M, Meilakhs A P, Eidel’man E D Pis’ma ZhTF 42 (5) 57 (2016); Shakhov F M, Meilakhs A P, Eidelman E D Tech. Phys. Lett. 42 252 (2016)
  162. Eidelman E D, Meilakhs A P Nanosyst. Phys. Chem. Math. 7 919 (2016)
  163. Eidelman E D et al J. Phys. D 50 464007 (2017)
  164. Eidel’man E D Fiz. Tekh. Poluprovodn. 51 944 (2017); Eidelman E D Semiconductors 51 906 (2017)
  165. Cahill D G et al J. Appl. Phys. 93 793 (2003)
  166. Khalatnikov I M Vvedenie v Teoriyu Sverkhtekuchesti (M.: Nauka, 1965); Per. na angl. yaz., Khalatnikov I M An Introduction To The Theory Of Superfluidity (Cambridge, MA: Advanced Book Program, Perseus Publ., 2000)
  167. Stoner R J, Maris H J Phys. Rev. B 48 16373 (1993)
  168. Meilakhs A P Fiz. Tverd. Tela 57 140 (2015); Meilakhs A P Phys. Solid State 57 148 (2015)
  169. Meilakhs A P, Eidel’man E D Pis’ma ZhETF 100 89 (2014); Meilakhs A P, Eidelman E D JETP Lett. 100 81 (2014)
  170. Arkhipov A V et al Nanosyst. Phys. Chem. Math. 9 110 (2018)
  171. Dames C, Chen G J. Appl. Phys. 95 682 (2004)
  172. Chen T-G et al Opt. Express 18 A467 (2010)
  173. Reikh K V, Eidel’man E D Fiz. Tverd. Tela 53 1618 (2011); Reich K V, Eidelman E D Phys. Solid State 53 1704 (2011)
  174. Zhu S et al Nano Res. 8 355 (2015)
  175. Benisty H Phys. Rev. B 51 13281 (1995)
  176. Inoshita T, Sakaki H Physica B 227 373 (1996)
  177. Nozik A J Annu. Rev. Phys. Chem. 52 193 (2001)
  178. Pandey A, Guyot-Sionnest P J. Phys. Chem. Lett. 1 45 (2010)
  179. Fang H-H et al Nature Commun. 9 243 (2018)
  180. Tanaka S, Matsunami M, Kimura S Sci. Rep. 3 3031 (2013)
  181. Li M et al Nature Commun. 8 14350 (2017)
  182. Wei X et al Nano Lett. 11 734 (2011)
  183. Wei X, Bando Y, Golberg D ACS Nano 6 705 (2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions