Issues

 / 

2020

 / 

April

  

Methodological notes


Particles in finite and infinite one-dimensional chains

 a, b
a S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Particle motion in one-dimensional crystal chain is studied with the help of the transfer matrix method. The transition from a finite to an infinite chain is analyzed. In cases where an analytical solution is impossible, the method allows the computation of energy spectra with acceptable accuracy, based on the known cell potential. It turns out that the structure of allowed and forbidden energy bands arising in an ideal lattice contains some features that are absent in the real world. This means that the model of an ideal lattice should be extended in order to describe reality. It is shown that accounting for small random perturbations of periodicity may serve as such an extension. Light propagation in a layered medium (including a photonic crystal) is studied using the same method.

Fulltext pdf (508 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.12.038709
Keywords: periodic lattice, finite lattice, transfer matrix, random perturbations, strong coupling and weak coupling approximations
PACS: 03.65.−w, 71.15.−m, 42.70.Qs (all)
DOI: 10.3367/UFNe.2019.12.038709
URL: https://ufn.ru/en/articles/2020/4/f/
000555762600006
2-s2.0-85091322930
2020PhyU...63..395G
Citation: Ginzburg I F "Particles in finite and infinite one-dimensional chains" Phys. Usp. 63 395–406 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, April 2019, revised: 25th, October 2019, 27th, December 2019

Оригинал: Гинзбург И Ф «Частицы в конечных и бесконечных одномерных периодических цепочках» УФН 190 429–440 (2020); DOI: 10.3367/UFNr.2019.12.038709

References (15) Similar articles (20) ↓

  1. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentumPhys. Usp. 63 57–65 (2020)
  2. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’Sov. Phys. Usp. 30 644–648 (1987)
  3. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)Phys. Usp. 63 721–724 (2020)
  4. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  5. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particlePhys. Usp. 57 891–896 (2014)
  6. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentallyPhys. Usp. 55 796–807 (2012)
  7. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  8. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamicsSov. Phys. Usp. 16 434–439 (1973)
  9. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theoryPhys. Usp. 63 407–411 (2020)
  10. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ionsPhys. Usp. 62 186–197 (2019)
  11. E.D. Trifonov “On the spin-statistics theoremPhys. Usp. 60 621–622 (2017)
  12. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  13. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  14. V.K. Ignatovich “The neutron Berry phasePhys. Usp. 56 603–604 (2013)
  15. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  16. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron opticsPhys. Usp. 39 169–177 (1996)
  17. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elementsPhys. Usp. 36 (9) 851–853 (1993)
  18. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)
  19. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanicsSov. Phys. Usp. 33 (1) 86–86 (1990)
  20. S.V. Vonsovskii, M.I. Katsnel’son “Single-electron density matrix and the metal-insulator criterion for crystalline solidsSov. Phys. Usp. 32 720–722 (1989)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions