Issues

 / 

2020

 / 

April

  

Methodological notes


Particles in finite and infinite one-dimensional chains

 a, b
a S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Particle motion in one-dimensional crystal chain is studied with the help of the transfer matrix method. The transition from a finite to an infinite chain is analyzed. In cases where an analytical solution is impossible, the method allows the computation of energy spectra with acceptable accuracy, based on the known cell potential. It turns out that the structure of allowed and forbidden energy bands arising in an ideal lattice contains some features that are absent in the real world. This means that the model of an ideal lattice should be extended in order to describe reality. It is shown that accounting for small random perturbations of periodicity may serve as such an extension. Light propagation in a layered medium (including a photonic crystal) is studied using the same method.

Fulltext is available at IOP
Keywords: periodic lattice, finite lattice, transfer matrix, random perturbations, strong coupling and weak coupling approximations
PACS: 03.65.−w, 71.15.−m, 42.70.Qs (all)
DOI: 10.3367/UFNe.2019.12.038709
URL: https://ufn.ru/en/articles/2020/4/f/
Citation: Ginzburg I F "Particles in finite and infinite one-dimensional chains" Phys. Usp. 63 395–406 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, April 2019, revised: 25th, October 2019, 27th, December 2019

Оригинал: Гинзбург И Ф «Частицы в конечных и бесконечных одномерных периодических цепочках» УФН 190 429–440 (2020); DOI: 10.3367/UFNr.2019.12.038709

References (15) Similar articles (20) ↓

  1. S.V. Goupalov “Classical problems with the theory of elasticity and the quantum theory of angular momentum63 57–65 (2020)
  2. N.P. Klepikov “Types of transformations used in physics, and particle ’exchange’30 644–648 (1987)
  3. S.V. Petrov “Was Sommerfeld wrong? (To the history of the appearance of spin in relativistic wave equations)63 721–724 (2020)
  4. V.G. Bagrov, D.M. Gitman, A.S. Pereira “Coherent and semiclassical states of a free particle57 891–896 (2014)
  5. Yu.M. Tsipenyuk “Zero point energy and zero point oscillations: how they are detected experimentally55 796–807 (2012)
  6. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  7. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  8. B.I. Sturman “Ballistic and shift currents in the bulk photovoltaic effect theory63 407–411 (2020)
  9. G.V. Shpatakovskaya “Semiclassical method of analysis and estimation of the orbital binding energies in many-electron atoms and ions62 186–197 (2019)
  10. E.D. Trifonov “On the spin-statistics theorem60 621–622 (2017)
  11. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitter57 1022–1034 (2014)
  12. K.V. Chukbar “Harmony in many-particle quantum problem61 389–396 (2018)
  13. V.K. Ignatovich “The neutron Berry phase56 603–604 (2013)
  14. A.A. Grib “On the problem of the interpretation of quantum physics56 1230–1244 (2013)
  15. V.I. Bodnarchuk, L.S. Davtyan, D.A. Korneev “Geometrical phase effects in neutron optics39 169–177 (1996)
  16. E.E. Nikitin, L.P. Pitaevskii “Imaginary time and the Landau method of calculating quasiclassical matrix elements36 (9) 851–853 (1993)
  17. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equation33 (12) 1072–1072 (1990)
  18. A.S. Tarnovskii “The Bohr-Sommerfeld quantization rule and quantum mechanics33 (1) 86–86 (1990)
  19. S.V. Vonsovskii, M.I. Katsnel’son “Single-electron density matrix and the metal-insulator criterion for crystalline solids32 720–722 (1989)
  20. K.S. Vul’fson “Angular momentum of electromagnetic waves30 724–728 (1987)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions