Methodological notes

Particles in finite and infinite one-dimensional chains

 a, b
a S.L. Sobolev Institute for Mathematics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Koptyuga 4, Novosibirsk, 630090, Russian Federation
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation

Particle motion in one-dimensional crystal chain is studied with the help of the transfer matrix method. The transition from a finite to an infinite chain is analyzed. In cases where an analytical solution is impossible, the method allows the computation of energy spectra with acceptable accuracy, based on the known cell potential. It turns out that the structure of allowed and forbidden energy bands arising in an ideal lattice contains some features that are absent in the real world. This means that the model of an ideal lattice should be extended in order to describe reality. It is shown that accounting for small random perturbations of periodicity may serve as such an extension. Light propagation in a layered medium (including a photonic crystal) is studied using the same method.

Fulltext is available at IOP
Keywords: periodic lattice, finite lattice, transfer matrix, random perturbations, strong coupling and weak coupling approximations
PACS: 03.65.−w, 71.15.−m, 42.70.Qs (all)
DOI: 10.3367/UFNe.2019.12.038709
Citation: Ginzburg I F "Particles in finite and infinite one-dimensional chains" Phys. Usp. 63 395–406 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 23rd, April 2019, revised: 25th, October 2019, 27th, December 2019

Оригинал: Гинзбург И Ф «Частицы в конечных и бесконечных одномерных периодических цепочках» УФН 190 429–440 (2020); DOI: 10.3367/UFNr.2019.12.038709

References (15) ↓ Similar articles (20)

  1. Elyutin P V, Krivchenkov V D Kvantovaya Mekhanika s Zadachami (M.: Fizmatlit, 2001)
  2. Serbo V G, Khriplovich I B Kvantovaya Mekhanika (Novosibirsk: Novosibirskii gos. un-t, 2008)
  3. Zelevinsky V Quantum Physics (Weinheim: Wiley-VCH, 2011); Per. na russk. yaz., Zelevinskii V G Kvantovaya Fizika Vol. 1-3 (Novosibirsk: RITs NGU, 2014, 2015)
  4. Ginzburg I F Osnovy Kvantovoi Mekhaniki (nerelyativistskaya Teoriya) (M.-Izhevsk: In-t komp’yut. issled., 2018)
  5. Flügge S Practical Quantum Mechanics (New York: Springer-Verlag, 1974); Per. na russk. yaz., Flyugge Z Zadachi Po Kvantovoi Mekhanike T. 1 Vol. 1 (M.: Mir, 1974)
  6. Gol’dman I I, Krivchenkov V D Sbornik Zadach Po Kvantovoi Mekhanike (M.: UNTs DO, 2001); Per. na angl. yaz., Gold’man I I, Krivchenkov V D Problems In Quantum Mechanics (Mineola, NY: Dover Publ., 2006)
  7. Galitskii V M, Karnakov B M, Kogan V I Zadachi Po Kvantovoi Mekhanike (M.: Editorial URSS, 2001); Per. na angl. yaz., Galitski V, Karnakov B, Kogan V Exploring Quantum Mechanics: A Collection Of 700+ Solved Problems For Students, Lecturers, And Researchers (Oxford: Oxford Univ. Press, 2013)
  8. Jones H The Theory Of Brillouin Zones And Electronic States In Crystals (Amsterdam: North-Holland Publ. Co., 1960); Per. na russk. yaz., Dzhons G Teoriya Zon Brillyuena i Elektronnye Sostoyaniya v Kristallakh (M.: Mir, 1968)
  9. Belotelov V I, Zvezdin A K Fotonnye Kristally i Drugie Metamaterialy (Prilozhenie k Zhurnalu "Kvant", №2) (M.: Byuro Kvantum, 2006)
  10. Kotkin G L, Tkachenko O A, Tkachenko V A Komp’yuternyi Praktikum Po Kvantovoi Mekhanike (Novosibirsk: Novosibirskii gos. un-t, 1996); Kotkin G L, Tkachenko O A, Tkachenko V A Elektronnyi Praktikum Po Kvantovoi Mekhanike (Novosibirsk: Novosibirskii gos. un-t, 2012);
  11. Braginskii L S i dr Sbornik Zadach Po Teorii Tverdogo Tela (Novosibirsk: Novosibirskii gos. un-t, 2013)
  12. Ignatovich V K Usp. Fiz. Nauk 150 145 (1986); Ignatovich V K Sov. Phys. Usp. 29 880 (1986)
  13. Landau L D, Lifshits E M Kvantovaya Mekhanika: Nerelyativistskaya Teoriya (M.: Fizmatlit, 2004); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  14. Davison S G, Levine J D "Surface states" Solid State Physics Vol. 25 (Eds H Ehrenreich, F Seitz, D Turnbull) (New York: Academic Press, 1970); Per. na russk. yaz., Devison S, Levin Dzh Poverkhnostnye (tammovskie) Sostoyaniya (M.: Mir, 1973)
  15. Ginzburg I F, Pogosov A G Elektrodinamika. Relyativistskoe Opisanie. Volnovye Yavleniya (Novosibirsk: Novosibirskii gos. un-t, 2010)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions