Issues

 / 

2020

 / 

March

  

Reviews of topical problems


New results for laser isotope separation using low-energy methods

 
Institute of Spectroscopy, Russian Academy of Sciences, ul. Fizicheskaya 5, Troitsk, Moscow, 108840, Russian Federation

Today, research aimed at the development of low-energy methods of molecular laser isotope separation (MLIS) is relevant and in demand. The main goal of these studies is to find efficient and cost-effective methods that can be used as the basis for the technology of laser separation of uranium isotopes, as well as other elements. To date, a number of approaches to the implementation of low-energy methods of MLIS using infrared (IR) lasers have been proposed. Many of these approaches are not well understood and / or are difficult to put into practice. Some of them are considered to be promising and require further study. These include the method of isotope-selective suppression of the clustering of molecules using IR lasers during gas-dynamic expansion at a nozzle exit and the method of isotope-selective IR dissociation of small molecular van der Waals clusters. A review of recent results obtained using these two methods is presented. The experimental facilities and research methods are briefly described, and the choice of the objects of study is substantiated. Results obtained with model SF6 and CF3Br molecules are analyzed with reference to studying the process of isotope-selective suppression of the clustering of molecules among themselves and with atoms of an argon carrier gas, as well as the process of isotope-selective IR dissociation of small homogeneous and mixed clusters of SF6)m Arn and (F3 Br)m Arn (where m = 1-2 and 0 ≤ n ≤ 5 are the numbers of molecules and atoms in the clusters, respectively). The results presented suggest that these methods can be used for the separation of isotopes in molecules containing isotopes of heavy elements, which have a slight isotopic shift in the IR absorption spectra.

Fulltext is available at IOP
Keywords: atoms, molecules, clusters, nanoparticles, molecular and cluster beams, methods for detecting molecular and cluster beams, controlling parameters and composition of molecular and cluster beams by means of lasers
PACS: 07.77.Gx, 33.80.−b, 36.40.−c, 42.62.−b, 42.62.Fi, 82.40.Fp, 82.50.Bc (all)
DOI: 10.3367/UFNe.2019.02.038530
URL: https://ufn.ru/en/articles/2020/3/b/
Citation: Makarov G N "New results for laser isotope separation using low-energy methods" Phys. Usp. 63 245–268 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, November 2018, revised: 23rd, January 2019, 8th, February 2019

Оригинал: Макаров Г Н «Новые результаты по лазерному разделению изотопов с использованием низкоэнергетических методов» УФН 190 264–290 (2020); DOI: 10.3367/UFNr.2019.02.038530

References (83) ↓ Cited by (3) Similar articles (20)

  1. Makarov G N Usp. Fiz. Nauk 185 717 (2015); Makarov G N Phys. Usp. 58 670 (2015)
  2. Eerkens J W Nucl. Sci. Eng 150 1 (2005)
  3. Eerkens J W Laser Part. Beams 23 225 (2005)
  4. Makarov G N, Petin A N Zh. Eksp. Teor. Fiz. 130 804 (2006); Makarov G N, Petin A N JETP 103 697 (2006)
  5. Makarov G N Usp. Fiz. Nauk 176 1155 (2006); Makarov G N Phys. Usp. 49 1131 (2006)
  6. Kim J, Eerkens J W, Miller W H Nucl. Sci. Eng 156 219 (2007)
  7. Kim J et al "Current status of the MLIS uranium enrichment process" Transactions of the Korean Nuclear Society Spring Meeting. Jeju, Korea, May 22, 2009 p. 455
  8. Eerkens J W, Kim J AIChE J. 56 2331 (2010)
  9. Makarov G N, Petin A N Pis’ma ZhETF 93 123 (2011); Makarov G N, Petin A N JETP Lett. 93 109 (2011)
  10. Lyakhov K A, Lee H J Appl. Phys. B 111 261 (2013)
  11. Makarov G N, Petin A N Zh. Eksp. Teor. Fiz. 146 455 (2014); Makarov G N, Petin A N JETP 119 398 (2014)
  12. Lyakhov K A, Lee H J J. Laser Appl 27 022008 (2015)
  13. Lyakhov K A, Lee H J, Pechen A N Separat. Purificat. Technol. 176 402 (2017)
  14. Bagratashvili V N et al Multiple Photon Infrared Laser Photophysics And Photochemistry (Chur: Harwood Acad. Publ., 1985)
  15. Cantrell C D (Ed.) Multiple-Photon Excitation And Dissociation Of Polyatomic Molecules (Topics in Current Physics) Vol. 35 (Berlin: Springer-Verlag, 1986)
  16. Lyman J L Laser Spectroscopy And Its Applications (Optical Engineering) Vol. 11 (Eds L J Radziemski, R W Solarz, J A Raisner) (New York: M. Dekker, 1987) p. 417
  17. Makarov G N Usp. Fiz. Nauk 175 41 (2005); Makarov G N Phys. Usp. 48 37 (2005)
  18. Baranov V Yu i dr Fiziko-khimicheskie protsessy pri selektsii atomov i molekul. Sb. dokladov 2-i Vseross. nauchnoi konf., g. Zvenigorod, 1997 (Pod red. V Yu Baranova, Yu A Kolesnikova) (M.: TsNIIatominform, 1997) p. 21
  19. Letokhov V S, Ryabov E A Izotopy: Svoistva, Poluchenie, Primenenie (Pod red. V Yu Baranova) (M.: IzdAT, 2000) p. 329
  20. Baranov V Yu, Dyad’kin A P Izotopy: Svoistva, Poluchenie, Primenenie (Pod red. V Yu Baranova) (M.: IzdAT, 2000) p. 343
  21. Letokhov V S, Ryabov E A The Optics Encyclopedia. Basic Foundations And Practical Applications Vol. 2 (G-L, Eds Th G Brown et al) (New York: Wiley-VCH, 2004) p. 1015-1028
  22. SILEX Systems Limited, http://www.silex.com.au
  23. SILEX Process, http://www.chemeurope.com/en/encyclopedia/Silex_Process.html
  24. SILEX Uranium Enrichment, SILEX Annual Report 2014, http://www.silex.com.au/Silex/media/Announcements/18-SLX-Annual-Report-2014_1.pdf?ext=.pdf
  25. SILEX Uranium Enrichment, SILEX Annual Report 2017, http://www.silex.com.au/Silex/media/Corporate-Governance/7-SLX-Annual-Report-2017-270917_1.pdf?ext=.pdf
  26. SILEX Uranium Enrichment, SILEX Annual Report 2018, http://www.silex.com.au/Silex/media/Corporate-Governance/10-SLX-Annual-Report-2018-081018_2.pdf?ext=.pdf
  27. Lyman J L "Enrichment separative capacity for SILEX" Report LA-UR-05-3786 (Los Alamos, NM: Los Alamos National Laboratory, 2005)
  28. Makarov G N, Petin A N Chem. Phys. Lett. 323 345 (2000)
  29. Makarov G N, Petin A N Chem. Phys. 266 125 (2001)
  30. Makarov G N Usp. Fiz. Nauk 173 913 (2003); Makarov G N Phys. Usp. 46 889 (2003)
  31. Makarov G N, Petin A N Kvantovaya Elektronika 46 248 (2016); Makarov G N, Petin A N Quantum Electron. 46 248 (2016)
  32. Zellweger J-M et al Phys. Rev. Lett 52 522 (1984)
  33. Philippoz J-M et al J. Phys. Chem 88 3936 (1984)
  34. Philippoz J-M et al Surf. Sci. 156 701 (1985)
  35. Philippoz J-M et al Ber. Bunseng. Phys. Chem. 89 291 (1985)
  36. Van den Bergh H Laser Optoelectron. (3) 263 (1985)
  37. Apatin V M i dr Zh. Eksp. Teor. Fiz. 152 627 (2017); Apatin V M et al JETP 125 531 (2017)
  38. Apatin V M i dr Kvantovaya Elektronika 48 157 (2018); Apatin V M et al Quantum Electron. 48 157 (2018)
  39. Apatin V M i dr Zh. Eksp. Teor. Fiz. 154 287 (2018); Apatin V M et al JETP 127 244 (2018)
  40. Makarov G N, Ogurok N-D D, Petin A N Kvantovaya Elektronika 48 667 (2018); Makarov G N, Ogurok N-D D, Petin A N Quantum Electron. 48 667 (2018)
  41. Lokhman V N et al Laser Phys 28 105703 (2018)
  42. Lokhman V N i dr Zh. Eksp. Teor. Fiz. 155 216 (2019); Lokhman V N et al JETP 128 188 (2019)
  43. Petin A N, Makarov G N Kvantovaya Elektronika 49 593 (2019); Petin A N, Makarov G N Quantum Electron. 49 593 (2019)
  44. Makarov G N Usp. Fiz. Nauk 187 241 (2017); Makarov G N Phys. Usp. 60 227 (2017)
  45. Kappes M, Leutwyler S Atomic And Molecular Beam Methods Vol. 1 (Ed. G Scoles) (New York: Oxford Univ. Press, 1988) p. 380
  46. Lee Y T "Isotope separation by photodissociation of Van der Waals molecules" US Patent 4,032,306 (1977)
  47. Lisy J M et al "Infrared vibrational predissociation spectroscopy of small molecular clusters" Laser Spectroscopy V (Springer Series in Optical Sciences, Eds A R W McKellar, T Oka, B P Stoicheff) (Berlin: Springer, 1981) p. 324; Lisy J M et al Report LBL-12981 (Berkeley, CA: Lawrence Berkeley Laboratory, 1981)
  48. Casassa M P et al J. Chem. Phys 72 6805 (1980)
  49. Casassa M P, Bomse D S, Janda K C J. Chem. Phys 74 5044 (1981)
  50. Casassa M P, Bomse D S, Janda K C J. Phys. Chem 85 2623 (1981)
  51. Okada Y et al J. Mol. Struct. 410-411 299 (1997)
  52. Janda K C Adv. Chem. Phys 60 201 (1985)
  53. Celii F G, Janda K C Chem. Rev 86 507 (1986)
  54. Miller R E J. Phys. Chem 90 3301 (1986)
  55. Buck U Adv. At. Mol. Opt. Phys. 35 121 (1995)
  56. Makarov G N Usp. Fiz. Nauk 188 689 (2018); Makarov G N Phys. Usp. 61 617 (2018)
  57. Pine A S, Robiette A G J. Mol. Spectr 80 388 (1980)
  58. Patterson C W, Krohn B J, Pine A S Opt. Lett 6 39 (1981)
  59. Patterson C W, Krohn B J, Pine A S J. Mol. Spectrosc 88 133 (1981)
  60. McDowell R S et al Spectrochim. Acta A 42 351 (1986)
  61. Baldacchini G, Marchetti S, Montelatici V J. Mol. Spectrosc. 91 80 (1982)
  62. Geraedts J et al Chem. Phys. Lett 78 277 (1981)
  63. Geraedts J, Stolte S, Reuss J Z. Phys. A 304 167 (1982)
  64. Geraedts J et al Faraday Discuss. Chem. Soc 73 375 (1982)
  65. Pietropolli Charmet A et al Phys. Chem. Chem. Phys 8 2491 (2006)
  66. Baranov V Yu i dr "Lazerno-molekulyarnoe razdelenie izotopov urana" Izotopy: Svoistva, Poluchenie, Primenenie Vol. 1 (M.: Fizmatlit, 2005) p. 474
  67. Bagratashvili V N i dr Zh. Eksp. Teor. Fiz. 77 2238 (1979); Bagratashvili V N et al Sov. Phys. JETP 50 1075 (1979)
  68. Makarov G N i dr Kvantovaya Elektronika 25 545 (1998); Makarov G N et al Quantum Electron. 28 530 (1998)
  69. Lokhman V N, Ogurok D D, Ryabov E A Chem. Phys 333 85 (2007)
  70. Lokhman V N, Ogurok D D, Ryabov E A Zh. Eksp. Teor. Fiz. 135 835 (2009); Lokhman V N, Ogurok D D, Ryabov E A JETP 108 727 (2009)
  71. Lokhman V N, Ogurok D D, Ryabov E A Eur. Phys. J. D 67 66 (2013)
  72. Apatin V M i dr Pis’ma ZhETF 97 800 (2013); ApatV M et al JETP Lett. 97 697 (2013)
  73. Apatin V M et al Laser Phys. Lett 12 016002 (2015)
  74. Apatin V M i dr Zh. Eksp. Teor. Fiz. 147 218 (2015); ApatV M et al JETP 120 191 (2015)
  75. Avatkov O N i dr Kvantovaya Elektronika 12 576 (1985); Avatkov O N et al Sov. J. Quantum Electron. 15 375 (1985)
  76. Takahashi M et al Appl. Phys. B 41 91 (1986)
  77. Melinon P et al Chem. Phys. 84 345 (1984)
  78. Apatin V M i dr Pis’ma ZhETF 104 440 (2016); Apatin V M et al JETP Lett. 104 425 (2016)
  79. Takeuchi K et al J. Nucl. Sci. Technol 26 301 (1989)
  80. Jensen R J et al Laser Focus 12 (5) 51 (1976)
  81. Geraedts J et al Chem. Phys. Lett 106 377 (1984)
  82. Liedenbaum C et al Z. Phys. D 11 175 (1988)
  83. Makarov G N Usp. Fiz. Nauk 180 185 (2010); Makarov G N Phys. Usp. 53 179 (2010)

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions