Issues

 / 

2020

 / 

December

  

Instruments and methods of investigation


Electrohydrodynamic emitters of ion beams

  a,   b, c, §  d, e, f
a Raith GmbH, Konrad-Adenauer-Allee 8, Dortmund, 44263, Germany
b Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation
c Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russian Federation
d Universidade Nova de Lisboa, Campus de Campolide, Lisboa, 1099-085, Portugal
e Ryazan State Radio Engineering University named after V.F. Utkin, Gagarina Street 59/1, Ryazan, 390005, Russian Federation
f Wuhan University, Wuhan, Hubei Province, China

We discuss physical processes underlying the generation of ion beams with high emission current density in electrohydrodynamic (EHD) emitters based on liquid metals and alloys and with low-temperature ion liquids. We consider EHD effects that influence the emission of ions (ion production mechanisms) and the kinetics of ion interactions in high-density beams. We analyze the factors determining the emission zone size, sustainability of emission at high and low currents, generation of clusters, increase in energy scattering, decrease in brightness, and other features of ion beams. We consider the specific design features of EHD emitters and the problems of practically ensuring their stable operation. Discussed in detail are modern application areas for ion sources with EHD emitters, including technological installations for ion-beam lithography, micro- and nanopatterning, ion microscopes and tools for local mass spectrometry of secondary ions, Ând systems to control and neutralize the potential of spacecraft and electrostatic rocket engines (microthrusters). We analyze prospects for further development of EHD emitters themselves and instruments based on them.

Fulltext is available at IOP
Keywords: electrodynamics, ion source, liquid metal, low-temperature ion liquid, nanopatterning, mass spectrometry of secondary ions, ion-beam lithography, liquid metals and alloys, nanotechnology
PACS: 29.25.Ni, 41.75.−i, 81.16.Nd (all)
DOI: 10.3367/UFNe.2020.09.038845
URL: https://ufn.ru/en/articles/2020/12/c/
Citation: Mazarov P A, Dudnikov V G, Tolstoguzov A B "Electrohydrodynamic emitters of ion beams" Phys. Usp. 63 1219–1255 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 14th, December 2019, revised: 13th, July 2020, 29th, September 2020

Оригинал: Мажаров П А, Дудников В Г, Толстогузов А Б «Электрогидродинамические источники ионных пучков» УФН 190 1293–1333 (2020); DOI: 10.3367/UFNr.2020.09.038845

References (372) ↓ Cited by (2) Similar articles (9)

  1. Bruchhaus L et al Appl. Phys. Rev. 4 011302 (2017)
  2. Bischoff L et al Appl. Phys. Rev. 3 021101 (2016)
  3. Gierak J et al J. Vac. Sci. Technol. B 101 (2018)
  4. Bassim N, Notte J "Focused ion beam instruments" Materials Characterization (ASM Handboo) Vol. 10 (Materials Park, OH: ASM Intern., 2019) p. 635
  5. Machalett F, Seidel P digital "Focused ion beams and some selected applications" Encyclopedia Of Applied Physics (New York: Wiley-VCH Verlag, 2019)
  6. Zhakin A I Usp. Fiz. Nauk 183 153 (2013); Zhakin A I Phys. Usp. 56 141 (2013)
  7. Utke I, Moshkalev S, Russell P (Eds) Nanofabrication Using Focused Ion And Electron Beams: Principles And Applications (Oxford: Oxford Univ. Press, 2012)
  8. Giannuzzi L A, Stevie F A (Eds) Introduction To Focused Ion Beams. Instrumentation, Theory, Techniques And Practice (New York: Springer-Verlag, 2005)
  9. Bassim N, Scott K, Giannuzzi L A MRS Bull. 39 317 (2014)
  10. Gabovich M D Usp. Fiz. Nauk 140 137 (1983); Gabovich M D Sov. Phys. Usp. 26 447 (1983)
  11. Ruedenauer F G Secondary Ion Mass Spectrometry SIMS IV. Proc. of the Fourth Intern. Conf., Osaka, Japan, November 13 - 19, 1983 (Springer Series in Chemical Physics) Vol. 36 (Eds A Benninghoven et al.) (Berlin: Springer-Verlag, 1984) p. 133
  12. Benninghoven A, Rüdenauer F G, Werner H W Secondary Ion Mass Spectrometry. Basic Concepts, Instrumental Aspects, Applications, And Trends (New York: J. Wiley, 1987)
  13. Wilson R G, Stevie F A, Magee C W Secondary Ion Mass Spectrometry: A Practical Handbook For Profiling And Bulk Impurity Analysis (New York: Wiley, 1989)
  14. Cherepin V T Ionnyi Mikrozondovyi Analiz (Kiev: Naukova dumka, 1992)
  15. Oechsner H Int. J. Mass Spectrom. Ion Proces. 143 271 (1995)
  16. Berthold W, Wucher A Surf. Interface Anal. 23 393 (1995)
  17. Wucher A "Laser post-ionization - fundamentals" ToF-SIMS: Materials Analysis By Mass Spectrometry (IM Publ. and Surface Spectra, Eds J C Vickerman, D Briggs) 2nd ed. (2013)
  18. Baturin V A, Eremin S A Poverkhnost’. Rentgenovskie, Sinkhrotronnye Neitronnye Issledovaniya (7) 87 (2008)
  19. Rüdenauer F G Surf. Interface Anal. 39 116 (2007)
  20. Tajmar M et al Ultramicroscopy 109 442 (2009)
  21. Müller E W Science 149 591 (1965)
  22. Hlawacek G, Göltzhäuser A (Eds) Helium Ion Microscopy (Cham: Springer Intern. Publ., 2016)
  23. Lozano P, Martínez-Sánchez M J. Colloid Interface Sci. 282 415 (2005)
  24. Welton T Chem. Rev. 99 2071 (1999)
  25. Tolstoguzov A B i dr Prib. Tekh. Eksp. (1) 5 (2015); Tolstogouzov A B et al Instrum. Exp. Tech. 58 1 (2015)
  26. Prewett P D, Mair G L R Focused Ion Beams From Liquid Metal Ion Sources (Taunton: Research Studies Press, 1991)
  27. Forbes R G, Mair G L R Handbook Of Charged Particle Optics 29 (2009)
  28. Orloff J, Utlaut M, Swanson L High Resolution Focused Ion Beams : FIB And Its Applications: The Physics Of Liquid Metal Ion Sources And Ion Optics And Their Application To Focused Ion Beam Technology (New York: Kluwer Acad. Plenum Publ., 2003)
  29. Wolf B (Ed.) Handbook Of Ion Sources (Boca Raton, FL: CRC Press, 1995)
  30. Zhang H Ion Sources (New York: Science Press. Springer, 1999)
  31. Brown I G The Physics And Technology Of Ion Sources (New York: Wiley, 1989); Per. na russk. yaz., Braun Ya (Red.) Fizika i Tekhnologiya Istochnikov Ionov (M.: Mir, 1998)
  32. Mackenzie R A D, Smith G D W Nanotechnology 1 163 (1990)
  33. Gilbert W De Magnete (Transl. P F Mottelay) (New York: Dover Publ., 1958), Facsimile
  34. Gray S Philos. Trans. R. Soc. Lond. 37 227 (1732); Gray S Philos. Trans. R. Soc. Lond. 37 260 (1732)
  35. Rayleigh Lord Proc. R. Soc. Lond. 29 71 (1879)
  36. Zeleny J Phys. Rev. 3 69 (1914)
  37. Zeleny J Phys. Rev. 10 1 (1917)
  38. Zeleny J J. Franklin Inst. 219 659 (1935)
  39. Müller E W Z. Phys. 131 136 (1951)
  40. Krohn V E Prog. Astronaut. Rocketry 5 73 (1961)
  41. Swatik D S, Hendricks C D Am. Inst. Aeronautics Astronautics J. 6 1596 (1968); Svatik D S, Khendriks K D Raketnaya Tekhnika Kosmonavtika 6 (8) 195 (1968)
  42. Mahoney J F et al J. Appl. Phys. 40 5101 (1969)
  43. Gomer R Field Emission And Field Ionization (Harvard Monographs in Applied Science) Vol. 9 (Cambridge, MA: Harvard Univ. Press, 1961) p. 134
  44. Taylor G I Proc. R. Soc. Lond. A 280 383 (1964)
  45. Krohn V E, Ringo G R Appl. Phys. Lett. 27 479 (1975)
  46. Krohn V E, Ringo G R Int. J. Mass. Spectrom. Ion Phys. 22 307 (1976)
  47. Clampitt R, Aitken K L, Jeffries D K J. Vac. Sci. Technol. 12 1208 (1975)
  48. Seliger R L et al Appl. Phys. Lett. 34 310 (1979)
  49. Venkatesan T, Wagner A, Barr D Appl. Phys. Lett 38 943 (1981)
  50. Dudnikov V G, Shabalin A L "Elektrogidrodinamicheskie emittery ionnykh puchkov" Preprint 90-31 (Novosibirsk: Institut yadernoi fiziki SO RAN, 1990); https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/057/22057152.pdf?r=1&r=1
  51. Dudnikov V G, Shabalin A L Prikladnaya Mekhanika Tekhnicheskaya Fizika (2) 3 (1990)
  52. Belchenko Y I et al Rev. Sci. Instrum. 61 378 (1990)
  53. Dudnikov V G, Shabalin A L Rev. Sci. Instrum. 63 2460 (1992)
  54. Dudnikov V G, Shabalin A L Pis’ma ZhTF 11 808 (1985)
  55. Dudnikov V arXiv:2003.07354
  56. Bell A E et al Int. J. Mass Spectrom. Ion Proc. 88 59 (1989)
  57. Panitz J A, Pregenzer A L, Gerber R A J. Vac. Sci. Technol. A 7 64 (1989)
  58. Alyakrinskaya N V i dr Pis’ma ZhTF 16 (19) 83 (1990)
  59. Dudnikov V G Rev. Sci. Instrum. 67 915 (1996)
  60. Milovanov R A, Erofeeva E V Nano- Mikrosistemnaya Tekhnika (11) 20 (2015)
  61. Zorzos A N, Lozano P C J. Vac. Sci. Technol. B 26 2097 (2008)
  62. Smith N S, Notte J A, Steele A V MRS Bull. 39 329 (2014)
  63. Delobbe A, Salord O, Sudraud P, "i-FIB. The ECR-FIB" The European Focused Ion Beam Users Group, EFUG, Annual Meeting, October 3, 2011, Bordeaux, France; http://efug.imec.be/EFUG2011_08_Delobbe.pdf
  64. Smith N et al Microscopy Today 17 (5) 18 (2009)
  65. Malherbe J et al Anal. Chem. 88 7130 (2016)
  66. Viteau M et al Ultramicroscopy 164 70 (2016)
  67. Knuffman B, Steele A V, McClelland J J J. Appl. Phys. 114 044303 (2013)
  68. Xu X et al Nucl. Instrum. Meth. Phys. Res. B 404 52 (2017)
  69. Xu X et al Microelectron. Eng. 174 20 (2017)
  70. Zhukov V A, Kalbittser Z Mikroelektronika 40 (1) 21 (2011)
  71. Gierak J, Septier A, Vieu C Nucl. Instrum. Meth. Phys. Res. A 427 91 (1999)
  72. Orloff J (Ed.) Handbook Of Charged Particle Optics (Boca Raton, FL: CRC Press, 1997)
  73. Reiser M Theory And Design Of Charged Particle Beams 2nd ed. (Weinheim: Wiley-VCH, 2008)
  74. Reiser M "Charakterisierung einer neuartigen Ionenstrahlsäule mit Geschwindigkeitsfilter (ExB) für Legierungsfilamente" Master-Thesis (Bochum: Ruhr-Univ. Bochum, 2013)
  75. Solov’ev A V, Tolstoguzov A B Zh. Tekh. Fiz. 57 953 (1987); Solov’ev A V, Tolstoguzov A B Sov. Phys. Tech. Phys. 32 580 (1987)
  76. Klingner N et al Beilstein J. Nanotechnol. 11 1742 (2020)
  77. Guilet S et al Microelectron. Eng. 88 1968 (2011)
  78. Mitterauer J IEEE Trans. Plasma Sci. 15 593 (1987)
  79. Marcuccio S, Giusti N, Tolstoguzov A Proc. of the 31st Intern. Electric Propulsion Conf. IEPC-2009, Sept. 20-24, 2009 (Ann Arbor, MI: Univ. of Michigan, 2009) p. 180
  80. Hren J J, Ranganathan S (Eds) Field-Ion Microscopy (New York: Plenum Press, 1968); Per. na russk. yaz., Ren Dzh, Ranganatan S (Red.) Avtoionnaya Mikroskopiya (M.: Mir, 1971)
  81. Forbes R G Surf. Sci. 61 221 (1976)
  82. Tsong T T Atom-Probe Field Ion Microscopy (Cambridge: Cambridge Univ. Press, 1990)
  83. Swanson L M, Schwind G A, Bell A E J. Appl. Phys. 51 3453 (1980)
  84. Ching M et al J. Vac. Sci. Technol. B 5 1628 (1987)
  85. Schottky W Phys. Z. 15 872 (1914)
  86. Kingham D R, Swanson L W Appl. Phys. A 34 123 (1984)
  87. Kingham D R, Swanson L W Appl. Phys. A 41 157 (1986)
  88. Vladimirov V V, Gorshkov V N Dokl. Akad. Nauk SSSR 297 1107 (1987)
  89. Badan V E, Gasanov I S Pis’ma ZhTF 15 (18) 49 (1989)
  90. Sikharulidze G G, Burmii Zh P Vysokochistye Veshchestva (2) 171 (1987)
  91. Dudnikov V G, Shabalin A L Zh. Tekh. Fiz. 55 776 (1985)
  92. Dudnikov V G, Shabalin A L Zh. Tekh. Fiz. 57 185 (1987)
  93. Kingham D R Surf. Sci. 116 273 (1982)
  94. Ganetsos Th et al Surf. Interface Analysis 39 128 (2007)
  95. Mair G L R J. Phys. D 86 (2000)
  96. Venkatesan T et al Appl. Phys. Lett. 39 9 (1981)
  97. Swanson L W, Bell A E The Physics And Technology Of Ion Sources (Ed. I G Brown) (New York: Wiley, 1989) p. 313
  98. Suonson L, Bell A Zhidkometallicheskie Ionnye Istochniki; Fizika i Tekhnologiya Ionnykh Istochnikov (Pod red. Ya Brauna) (M.: Mir, 1998)
  99. Hornsey R I, Marriott P J. Phys. D 22 699 (1989)
  100. Fano U, Fano L Physics Of Atoms And Molecules; An Introduction To The Structure Of Matter (Chicago, IL: Univ. of Chicago Press, 1972); Per. na russk. yaz., Fano U, Fano L Fizika Atomov i Molekul (M.: Nauka, 1980)
  101. Grigor’ev A I Pis’ma ZhTF 27 (7) 89 (2001); Grigor’ev A I Tech. Phys. Lett. 27 305 (2001)
  102. Shiryaeva S O, Grigor’ev A I, Morozov V V Zh. Tekh. Fiz. 73 (7) 21 (2003); Shiryaeva S O, Grigor’ev A I, Morozov V V Tech. Phys. 48 822 (2003)
  103. Dole M et al J. Chem. Phys. 49 2240 (1968)
  104. Hagena O F, Obert W J. Chem. Phys. 56 1793 (1972)
  105. De la Mora J F, Loscertales I G J. Fluid Mech. 260 155 (1994)
  106. Losano P J. Phys. D 39 126 (2006)
  107. Coffman C S, Martínez-Sánchez M, Lozano P C Phys. Rev. E 99 063108 (2019)
  108. Bischoff L et al Nucl. Instrum. Meth. Phys. Res. B 161-163 1128 (2000)
  109. Forbes R G Vacuum 48 85 (1997)
  110. Forbes R G, Ljepojevic N N Surf. Sci. 266 170 (1992)
  111. Swanson L W Nucl. Instrum. Meth. Phys. Res. 218 347 (1983)
  112. Gierak J, Jede R, Hawkes P Nanofabrication Handbook (Eds S Cabrini, S Kawata) (Boca Raton, FL: CRC Press, 2012) p. 41
  113. Sudraud P, Colliex C, Van der Walle J J. Physics 40 207 (1979)
  114. Driesel W, Dietzsch C Appl. Surf. Sci. 93 179 (1996)
  115. Driesel W et al J. Vac. Sci. Technol. B 14 1621 (1996)
  116. Driesel W, Dietzsch C, Möser M J. Phys. D 29 2492 (1996)
  117. Hesse E et al Jpn. J. Appl. Phys. 35 5564 (1996)
  118. Bondarenko G G, Kabanova T A, Rybalko V V Osnovy Materialovedeniya (Pod red. G G Bondarenko) (M.: BINOM. Laboratoriya znanii, 2018)
  119. Lyakishev N P Diagrammy Sostoyaniya Dvoinykh Metallicheskikh Sistem (M.: Mashinostroenie, 1996), Spravochnik v 3 t.
  120. Landolt-Boernstein, Madelung O (Ed.) Group IV, Phase Equilibria, Crystallographic And Thermodynamic Data Of Binary Alloys (Berlin: Springer, 1995)
  121. Massalski T B (Ed.) Binary Alloy Phase Diagrams (Materials Park, OH: ASM Intern., 1990)
  122. Honig R E, Kramer D A RCA Rev. 30 285 (1969)
  123. Alcock C B, Itkin V P, Horrigan M K Can. Metallurg. Quarterly 23 309 (1984)
  124. Vapor Pressure Calculator, https://www.iap.tuwien.ac.at/www/surface/vapor_pressure
  125. Grigor’ev I S, Meilikhov E Z (Red.) Fizicheskie Velichiny. Spravochnik (M.: Energoatomizdat, 1991); Per. na angl. yaz., Grigoriev I S, Meilikhov E Z (Eds) Handbook Of Physical Quantities (Boca Raton, Fl.: CRC Press, 1997)
  126. Belashchenko D K Usp. Fiz. Nauk 183 1281 (2013); Belashchenko D K Phys. Usp. 56 1176 (2013)
  127. Bell A E, Swanson L W Appl. Phys. A 41 335 (1986)
  128. Mair G L R et al Nucl. Instrum. Meth. Phys. Res. B 217 347 (2004)
  129. Mair G L R, Thoms S J. Phys. D 22 975 (1989)
  130. Tegart W J The Electrolytic And Chemical Polishing Of Metals (Oxford: Pergamon Press, 1959) p. 140
  131. Mazarov P et al MRS Fall Meeting 2019, Boston, USA
  132. Ishikawa J, Takagi T J. Appl. Phys. 56 3050 (1984)
  133. Vasiljevich I et al The 32nd Intern. Electric Propulsion Conf., Wiesbaden, Germany, 2011
  134. Pilz W et al Rev. Sci. Instrum. 88 123302 (2017)
  135. Deryagin B V, Churaev N V Smachivayushchie Plenki (M.: Nauka, 1984)
  136. Wieck A D "Ionensorten" http://www.rub.de/afp/
  137. Kukharchyk N et al Appl. Phys. A 122 1072 (2016)
  138. Wortmann M et al Rev. Sci. Instrum. 84 093305 (2013)
  139. Barr D L J. Vac. Sci. Technol. B 5 184 (1987)
  140. Rao S et al J. Vac. Sci. Technol. B 7 1787 (1989)
  141. Vikulova I V i dr Elektronnaya Promyshlennost’ (10) 39 (1990)
  142. Zharkov V V, Parshin G D, Chernyak E Ya Prib. Tekh. Eksp. (1) 232 (1989)
  143. Belykh S F et al Surf. Coatings Technol. 53 289 (1992)
  144. Mazarov P et al Appl. Surf. Sci. 254 7401 (2008)
  145. Bischoff L, Pilz W, Mazarov P, Wieck A D Appl. Phys. A 99 145 (2010)
  146. Kollmer F Appl. Surf. Sci. 231-232 153 (2004)
  147. Wagner A J. Vac. Sci. Technol. 16 1871 (1979)
  148. Gierak J et al Microelectron. Eng. 87 1386 (2010)
  149. Ishitani T, Umemura K, Kawanami Y J. Vac. Sci. Technol. B 6 931 (1988)
  150. Dudnikov V G, Shabalin A L Prib. Tekh. Eksp. (5) 149 (1986)
  151. Shabalin A L "Elektrogidrodinamicheskie istochniki ionnykh puchkov" Diss. ... Kand. Fiz.-mat. Nauk (Novosibirsk: IYaF SO AN SSSR, 1989)
  152. Van de Walle J, Tarento R J, Joyes P Z. Phys. D 20 17 (1991)
  153. Kreissig U J. Phys. D 23 959 (1990)
  154. Mair G L R et al Appl. Phys. A 81 385 (2005)
  155. Bischoff L et al Ultramicroscopy 100 1 (2004)
  156. Aidinis C J et al Microelectron. Eng. 73-74 116 (2004)
  157. Higuchi-Rusli R Rev. Sci. Instrum. 67 3501 (1996)
  158. Bischoff L et al J. Phys. Conf. Ser. 10 214 (2005)
  159. Georgieva S et al Vacuum 51 (2) 99 (1998)
  160. Shpyrko O G et al Science 313 77 (2006)
  161. Mazarov P et al J. Vac. Sci. Technol. B 47 (2009)
  162. Berezovskaya V V, Ishina E A, Ozerets N N Diagrammy Sostoyaniya Troinykh Sistem (M.: Flinta, 2017)
  163. Melnikov A et al Nucl. Instrum. Meth. Phys. Res. B 195 422 (2002)
  164. Mazarov P et al "Light and heavy ions from new non-classical liquid metal alloy ion sources for advanced nanofabrication" AVS 66th Intern. Symp. and Exhibition, Columbus, Ohio, October 20 - 25, 2019
  165. Bischoff L, Akhmadaliev Ch J. Phys. D 41 052001 (2008)
  166. Pilz W et al J. Vac. Sci. Technol. B 37 021802 (2019)
  167. A Simple Sputter Yield Calculator, https://www.iap.tuwien.ac.at/www/surface/sputteryield
  168. Ziegler J F, Biersack J P, Littmark U The Stopping And Range Of Ions In Solids (New York: Pergamon Press, 1985), and version SRIM-2012.03; http://www.srim.com
  169. Bischoff L et al J. Vac. Sci. Technol. B 38 042801 (2020)
  170. Dudnikov V G, Shabalin A L Fizika Klasterov (Pod Red. A A Vostrikova, A K Rebrova) (Novosibirsk: Institut teplofiziki SO AN SSSR, 1987) p. 23
  171. Knapp W, Bischoff L, Teichert J Appl. Surf. Sci. 146 134 (1999)
  172. Thorn A et al Rev. Sci. Instrum. 83 02A511 (2012)
  173. Swanson L W, Schwind G A J. Appl. Phys. 49 5655 (1978)
  174. Chen L W, Wang Y L Appl. Phys. Lett. 72 389 (1998)
  175. Rao K A et al J. Vac. Sci. Technol. B 7 1793 (1989)
  176. Hata K et al J. Physique C 6 49 125 (1988)
  177. Hata K et al J. Phys. Colloques C6-177 (1987)
  178. Sheu B L, Wang Y L Appl. Phys. Lett. 80 1480 (2002)
  179. Mair G L R J. Phys. D 17 2323 (1984)
  180. Mair G L R Vacuum 36 847 (1986)
  181. Mair G L R Nucl. Instrum. Meth. Phys. Res. B 43 240 (1989)
  182. Vladimirov V V et al J. Vac. Sci. Technol. B 9 2582 (1991)
  183. Forbes R G J. Aerosol Sci. 31 (1) 97 (2000)
  184. Thompson S, Prewett D J. Phys. D 17 2305 (1984)
  185. Akhmadaliev Ch et al Microelectron. Eng. 73-74 120 (2004)
  186. Shikin V B Usp. Fiz. Nauk 181 1241 (2011); Shikin V B Phys. Usp. 54 1203 (2011)
  187. Vladimirov V V, Gorshkov V N Dokl. Akad. Nauk SSSR 297 1107 (1987)
  188. Gabovich M D, Gasanov I S, Protsenko I M Zh. Tekh. Fiz. 58 2367 (1988)
  189. Shabalin A L Pis’ma ZhTF 15 (6) 27 (1989)
  190. Kovalenko V P, Shabalin A L Pis’ma ZhTF 15 (6) 62 (1989)
  191. Beckman J C et al J. Vac. Sci. Technol. B 15 2332 (1997)
  192. Alton G D, Read P M Nucl. Instrum. Meth. Phys. Res. B 54 7 (1991)
  193. Hagen C W, Fokkema E, Kruit P J. Vac. Sci. Technol. B 26 2091 (2008)
  194. Orloff J, Swanson L W J. Vac. Sci. Technol. 19 1149 (1981)
  195. Schwind G A, Swanson L W J. Vac. Sci. Technol. B 25 2586 (2007)
  196. Ward J W J. Vac. Sci. Technol. B 3 207 (1985)
  197. Georgieva S, Vichev R G, Drandarov N Vacuum 44 1109 (1993)
  198. Kamura M et al Appl. Phys. Lett. 42 908 (1983)
  199. Knauer W Optik 59 335 (1981)
  200. Miyauchi E et al Jpn. J. Appl. Phys. 26 L145 (1987)
  201. Ishitani T, Kawanami Y, Shuhuri S Jpn. J. Appl. Phys. 26 1777 (1987)
  202. Kubena R L, Ward J W Appl. Phys. Lett. 51 1960 (1987)
  203. Ward J W, Utlaut M W, Kubena R L J. Vac. Sci. Technol. B 5 169 (1987)
  204. Ward J W, Kubena R L, Utlaut M W J. Vac. Sci. Technol. B 6 2090 (1988)
  205. Komuro M Appl. Phys. Lett. 52 75 (1988)
  206. Ishitani T et al Appl. Phys. A. 44 233 (1987)
  207. Advanced Focused Ion Beam Nanofabrication Capabilities Of The NanoFIBTWO Source And Column Technology, White Paper, Raith, 2014
  208. Knauer W J. Vac. Sci. Technol. 16 1676 (1979)
  209. Mair G L R, Mulvey T, Forbes R G J. Physique C 9 179 (1984)
  210. Sudraud P, Colliex C, van de Walle J J. Physique 40 L207 (1979)
  211. Dudnikov V G, Shabalin A L Zh. Tekh. Fiz. 60 (4) 131 (1990)
  212. Beckman J C et al J. Vac. Sci. Technol. B 14 3911 (1996)
  213. Sakurai T, Culbertson R J, Robertson G H Appl. Phys. Lett. 34 11 (1979)
  214. Kim Y G et al J. Phys. D 31 3463 (1998)
  215. Bischoff L et al Microelectron. Eng. 53 613 (2000)
  216. Hornsey R Appl. Phys. A 49 697 (1989)
  217. Aidinis C et al J. Phys. D 34 L14 (2001)
  218. Bischoff L Nucl. Instrum. Meth. Phys. Res. B 266 1846 (2008)
  219. Marriott P Appl. Phys. A 44 329 (1987)
  220. Ishitani T, Umemura K, Kawanami Y J. Appl. Phys. 61 748 (1987)
  221. Yang P et al J. Chem. Phys. 135 034502 (2011)
  222. Bundaleski N et al Int. J. Mass Spectrom. 353 19 (2013)
  223. Zhang S et al Ionic Liquids. Physicochemical Properties (Amsterdam: Elsevier, 2009)
  224. Perez-Martinez C et al Microelectron. Eng. 88 2088 (2011)
  225. Larriba C et al J. Appl. Phys. 101 084303 (2007)
  226. Losano P, Martínez-Sánchez M J. Colloid Interface Sci. 280 (1) 149 (2004)
  227. Brikner N, Losano P Appl. Phys. Lett. 101 193504 (2012)
  228. Takeuchi M et al Nucl. Instrum. Meth. Phys. Res. B 315 234 (2013)
  229. Takaoka G H et al Nucl. Instrum. Meth. Phys. Res. B 315 257 (2013)
  230. Takeuchi M et al Nucl. Instrum. Meth. Phys. Res. B 315 345 (2013)
  231. Perez-Martinez C S, Lozano P C Appl. Phys. Lett. 107 043501 (2015)
  232. Xu T, Tao Z, Lozano P C J. Vac. Sci. Technol. B 36 052601 (2018)
  233. Fujiwara Y et al J. Appl. Phys. 111 064901 (2012)
  234. Fujiwara Y et al Surf. Interface Anal. 45 517 (2013)
  235. Fujiwara Y, Saito N Rapid Com. Mass Spectrom. 31 1859 (2017)
  236. Perez-Martinez C et al J. Vac. Sci. Technol. B 25 (2010)
  237. Bischoff L Nucl. Instrum. Meth. Phys. Res. B 266 1846 (2008)
  238. Cherepin V T Ionnyi Zond (Kiev: Naukova dumka, 1981)
  239. Bruchhaus L "An ion beam complement to electron beam writers" Dissertation, Lehrstuhl Experimentelle Physik l (Dortmund: Tech. Univ. Dortmund, 2012)
  240. Bischoff L et al "Nanostructures by mass-separated FIB" FIB Nanostructures (Lecture Notes On Nanoscale Science And Technology, Vol. 20, Ed. Z Wang, Lecture Notes on Nanoscale Science and Technology) Vol. 20 (Ed. Z Wang) (Berlin: Springer, 2013)
  241. Bischoff L, Mair G L R Recent Res. Developments Appl. Phys. 6 123 (2003)
  242. Gierak J Nanofabrication 1 35 (2014)
  243. Sloyan K, Melkonyan H, Dahlem M S Int. J. Adv. Manuf. Technol. 107 4469 (2020)
  244. Baglin J E E Appl. Phys. Rev. 7 011601 (2020)
  245. Mühle R Rev. Sci. Instrum. 63 3040 (1992)
  246. Joshi-Imre A, Bauerdick S J. Nanotechnology 2014 ID170415 (2014)
  247. Bauerdick S et al J. Vac. Sci. Technol. B 31 06F404 (2013)
  248. Nadzeyka A et al Microelectron. Eng. 98 198 (2012)
  249. Wanzenboeck H D, Waid S "Focused ion beam lithography" Recent Advances In Nanofabrication Techniques And Applications (Ed. B Cui) (Rijeka: InTech, 2011)
  250. Bauerdick S Microscopy Analysis (January/February) 11-13 (2018)
  251. Yao N, Epstein A K Microscopy: Science, Technology, Applications And Education (Badajoz: Formatex Research Center, 2010) p. 2190
  252. Stanishevsky A V "Focused ion beam nanofabrication" Encyclopedia Of Nanoscience And Nanotechnology Vol. 3 (Stevenson Ranch, CA: American Scientific Publ., 2004) p. 469
  253. Watt F et al Int. J. Nanosci. 4 269 (2005)
  254. Matsui S et al J. Vac. Sci. Technol. B 9 2622 (1991)
  255. Bischoff L Ultramicroscopy 103 59 (2005)
  256. Melngailis J J. Vac. Sci. Technol. B 5 469 (1987)
  257. Tseng A A Nanolithography 6 594 (2005)
  258. Evstrapov A A i dr Nauch. Tekh. Vest. SPGU Inf. Tekh. Mekh. Opt. (4) 59 (2010)
  259. Gierak J Semicond. Sci. Technol. 24 043001 (2009)
  260. Gierak J et al Ultramicroscopy 109 457 (2009)
  261. Seniutinas G et al Nanofabrication 2 54 (2015)
  262. RAITH. Nanofabrication, https://www.raith.com/
  263. Iede R Nanoindustriya (2) 8 (2012)
  264. VELION: FIB-SEM where FIB truly comes first. FIB and SEM for Nanofabrication, Nanoengineering and Inspection, Technical Notes, Raith (2019)
  265. Mazarov P Lithography Meets FIB: Gallium Free Focused Ion Beam Nanofabrication, FIB Workshop Zurich, 23.06.2014
  266. Chen Y et al Nano Lett. 16 3253 (2016)
  267. Nadzeyka A et al FIB Based Sketch and Peel with Various Ion Species for Fast and Precise Patterning of Large Structures. EIPBN Conference (2018)
  268. Levi-Setti R, Fox T R Nucl. Instrum. Meth. 168 139 (1980)
  269. Yao N, Wang Z L (Eds) Handbook Of Microscopy For Nanotechnology (Dordrecht: Kluwer Acad. Publ., 2005)
  270. Yao N, Van Ch L (Red.) Spravochnik Po Mikroskopii dlya Nanotekhnologii (M.: Nauchnyi mir, 2011)
  271. Volkert M A, Minor A M MRS Bull. 32 389 (2007)
  272. Phaneuf M W Micron 30 277 (1999)
  273. Nastasi M, Mayer J, Hirvonen J Ion-Solid Interactions: Fundamentals And Applications ((Cambridge Solid State Science Series)) (Cambridge: Cambridge Univ. Press, 1996)
  274. Nastasi M, Mayer J W Ion Implantation And Synthesis Of Materials (Berlin: Springer-Verlag, 2006)
  275. Utke I, Hoffmann P, Melngailis J J. Vac. Sci. Technol. B 26 1197 (2008)
  276. Giannuzzi L A, Stevieb F A Micron 30 197 (1999)
  277. Mayer J et al MRS Bull. 32 400 (2007)
  278. Langford E M, Rogers M Micron 39 1325 (2008)
  279. Kuznetsova M A, Luchinin V V, Savenko A Yu Izv. SPbGETU "LETI". Ser. Fizika Tverdogo Tela Elektronika (2) 28 (2006)
  280. Pezzagna S et al Small 6 2117 (2010)
  281. Lesik M et al Phys. Status Solidi A 210 2055 (2013)
  282. Kunstmann T et al Rev. Sci. Instrum. 77 086105 (2006)
  283. Konoplev B G i dr Mikroelektronika 41 47 (2012)
  284. Tolstoguzov A B Mass-spektrometriya 6 280 (2009); Tolstoguzov A B J. Anal. Chem. 65 1311 (2010)
  285. Miyaki T et al Cell Tissue Res. 379 245 (2020)
  286. Nastasi M, Mayer J W Mater. Sci. Eng. 12 (1) 1 (1994)
  287. Rangelow I W et al J. Vac. Sci. Technol. B 36 (6) 06J102 (2018)
  288. Holz M et al Microscopy Today 27 (6) 24 (2019)
  289. Mykkänen E et al Nanomaterials 10 950 (2020)
  290. Tilli M et al Handbook Of Silicon Based MEMS Materials And Technologies (Waltham: Elsevier, 2020)
  291. Dubrovin A N, Dudnikov V G, Kovalevskii D V, Shabalin A L Prib. Tekh. Eksp. (2) 180 (1991); Dubrovin A N, Dudnikov V G, Kovalevskii D V, Shabalin A L Preprint 89-50 (Novosibirsk: Institut yadernoi fiziki SO AN SSSR, 1989); Dubrovin A N, Dudnikov V G, Kovalevskii D V, Shabalin A L http://irbiscorp.spsl.nsc.ru/fulltext/prepr/1989/p1989_50.pdf
  292. Prewett P D, Kellogg E M Nucl. Instrum. Meth. Phys. Res. B 6 135 (1985)
  293. Reyntjens S, Puers R J. Micromech. Microeng. 11 287 (2001)
  294. Luchinin V V Luchinin V V, Savenko A Yu "Nanorazmernye ionno-luchevye tekhnologii" Nanotekhnologiya: Fizika, Protsessy, Diagnostika, Pribory. Monografiya (Pod red. V V Luchinina, Yu M Tairova) (M.: Fizmatlit, 2006)
  295. Yao N Focused Ion Beam Systems - Basics And Applications (Cambridge: Cambridge Univ. Press, 2007)
  296. Smith N S, Notte J A, Steele A V MRS Bull. 39 320 (2014)
  297. Gila B et al AIP Conf. Proc. 1336 243 (2011)
  298. Benkouider A et al Thin Solid Films 543 69 (2013)
  299. Appleton B R et al Nucl. Instrum. Meth. Phys. Res. B 272 153 (2011)
  300. Bussone G et al J. Appl. Cryst. 46 887 (2013)
  301. Scholz S et al arXiv:1506.08989
  302. Tongay S et al Appl. Phys. Lett. 100 073501 (2012)
  303. Pearton S J et al J. Nanoeng. Nanomanuf. 1 35 (2011)
  304. Gila B P Microscopy Analysis (November) 7 (2013)
  305. Escovitz W H, Fox T R, Levi-Setti R Proc. Natl. Acad. Sci. USA 72 1826 (1975)
  306. Vickerman J C, Swift A Surface Analysis - The Principal Techniques (Ed. J C Vickerman) (Chichester: Wiley, 1997) p. 135
  307. Lamberti W A Handbook Of Microscopy For Nanotechnology (Eds N Yao, Z L Wang) (Boston: Kluwer Acad. Publ., 2005) p. 207
  308. Volkov S S, Denisov A G, Tolstoguzov A B Obzory Po Elektronnoi Tekhnike. Ser. 7. Tekhnologiya, Organizatsiya Proizvodstva i Oborudovanie (M.: TsNII Elektronika, 1987) p. 61
  309. Volkov S S, Tolstoguzov A B Posloinyi Analiz Poluprovodnikovykh Materialov Metodom Vtorichno-ionnoi Mass-spektrometrii. Obzory Po Elektronnoi Tekhnike. Ser. 7. Tekhnologiya, Organizatsiya Proizvodstva i Oborudovanie. Vyp. 4 (1338) (M.: TsNII Elektronika, 1988) p. 48
  310. Tolstoguzov A B Perspektivnye Napravleniya Razvitiya Metoda Vtorichno-ionnoi Mass-spektrometrii. Obzory Po Elektronnoi Tekhnike. Ser. Tekhnologiya, Organizatsiya Proizvodstva i Oborudovanie Vyp. 5 (1604) (M.: TsNII Elektronika, 1991) p. 67
  311. Tolstoguzov A B Poverkhnost’ (4) 5 (1994)
  312. Wucher A, Fisher G L, Mahoney C M Cluster Secondary Ion Mass Spectrometry: Principles And Applications, Ed. C M Mahoney (Singapore: Wiley, 2013) p. 207
  313. Zhang L, Dai C, Zhang J Surf. Interface Anal. 52 (5) 306 (2020)
  314. Gall’ L N i dr Mass-spektrometriya 5 295 (2008)
  315. Castaing R, Slodzian G J. Microsc. 1 395 (1962)
  316. Liebl H J. Appl. Phys. 38 5277 (1967)
  317. Levi-Setti R, Wang Y, Crow G J. Phys. Colloq. 45 (S9) 197 (1984)
  318. Levi-Setti R, Wang Y L, Crow G Appl. Surf. Sci. 26 249 (1986)
  319. Chabala J M et al Int. J. Mass Spectrom. Ion Proc. 143 191 (1995)
  320. Gavrilov K L et al J. Am. Ceram. Soc. 82 1001 (1999)
  321. Strick R et al J. Cell Biology 155 899 (2001)
  322. Nomura S et al Surf. Interface Anal. 16 105 (1990)
  323. Khursheed A, Cheong K H, Hoang H Q J. Vac. Sci. Technol. B 28 C6F10 (2010)
  324. Eccles A J, Steele T A, Robinson A W Appl. Surf. Sci. 144-145 106 (1999)
  325. Chérioux F et al Appl. Surf. Sci. 253 6140 (2007)
  326. Volkov S S i dr Elektronnaya Promyshlennost’ (10) 13 (1990)
  327. Sun S et al Surf. Interface Anal. 36 1367 (2004)
  328. Walker A V, Winograd N Appl. Surf. Sci. 203-204 198 (2003)
  329. Touboul D et al J. Am. Soc. Mass Spectrom. 16 1608 (2005)
  330. Winograd N "The development of secondary ion mass spectrometry (SIMS) for imaging" The Encyclopedia Of Mass Spectrometry Vol. 9 Historical Perspectives Pt. A The Development Of Mass Spectrometry (Eds K A Nier, A L Yergey, P J Gale) (Amsterdam: Elsevier, 2016) p. 103
  331. Arushanov K A et al Appl. Surf. Sci. 265 642 (2013)
  332. Drozdov M N et al Thin Solid Films 577 11 (2015)
  333. Drozdov M N et al Thin Solid Films 607 25 (2016)
  334. Tolstogouzov A et al Rapid Commun Mass Spectrom. 33 323 (2019)
  335. Rüdenauer F G Surf. Interface Anal. 6 (3) 132 (1984)
  336. Veryovkin I V et al Nucl. Instrum. Meth. Phys. Res. B 261 508 (2007)
  337. Pelster A et al Anal. Chem. 88 9638 (2016)
  338. Wirtz T et al Nanotechnology 26 434001 (2015)
  339. Bayly A R, Waugh A R, Anderson K Nucl. Instrum. Meth. 218 375 (1983)
  340. Eswara S et al Appl. Phys. Rev. 6 021312 (2019)
  341. Pillatsch L, Ostlund F, Michler J Prog. Crystal Growth Characterization Mater. 65 (1) 1 (2019)
  342. Grad R, Knott K, Pedersen A Space Sci. Rev. 34 289 (1983)
  343. Riedler W et al Space Sci. Rev. 79 271 (1997)
  344. Stephan T Planet. Space Sci. 49 859 (2001)
  345. Shilobreeva S N Mass-spektrometriya 14 (1) 40 (2017)
  346. Riedler W et al ESA-ISY 4 127 (1992)
  347. Hamelin M et al Adv. Space Res. 10 (3-4) 49 (1990)
  348. Pomathoid L, Michau J L, Hamelin M Rev. Sci. Instrum. 59 2409 (1988)
  349. Hornung K et al Planet. Space Sci. 103 309 (2014)
  350. Bardyn A et al Mon. Not. R. Anstron. Soc. 469 S712 (2017)
  351. Tajmar M Advanced Space Propulsion Systems (Wien: Springer, 2003)
  352. Busek Co. Inc., (2020) http://www.busek.com/index.htm
  353. FOTEC Forschungs- und Technologietransfer GmbH, (2020) https://www.fotec.at
  354. Waydo S, Henry D, Campbell M IEEE Aerospace Conf. Proc. 1 435 (2002)
  355. CubeSat, (2020) http://www.cubesat.org
  356. Enpulsion, (2020) https://www.enpulsion.com
  357. Schönherr T et al Proc. of the 36th Inter. Electric Propulsion Conf. IEPC-2019, Sept. 15-20, 2019 (Vienna: Univ. of Vienna, 2019) p. 362
  358. Bock D, Tajmar M Acta Astronautica 144 422 (2018)
  359. Morpheus Space, (2020) https://www.morpheus-space.com
  360. Paita L et al Proc. of the 31st Inter. Electric Propulsion Conf. IEPC-2009, Sept. 20 - 24, 2009 (Ann Arbor, MI: Univ. of Michigan, 2009) p. 186
  361. Marcuccio S, Genovese A, Andrenucci M J. Propulsion Power 14 774 (1998)
  362. Courtney D G, Li H Q, Losano P J. Phys. D 45 485203 (2012)
  363. Krpoun R et al Appl. Phys. Lett. 94 163502 (2009)
  364. Krpoun R, Shea H R J. Micromech. Microeng. 19 045019 (2009)
  365. Dandavino S et al Proc. of the 33rd Inter. Electric Propulsion Conf. IEPC-2013, Oct. 6-10, 2013 (Washington, DC: The George Washington Univ., 2013) p. 127
  366. MEMS-Based Electric Micropropulsion for Small Spacecraft to Enable Robotic Space Exploration and Space Science, (2020) http://cordis.europa.eu/projects/263035
  367. Marcuccio S, Pergola P, Giusti N ""IL-FEEP: a simplified, low cost electric thruster for micro- and nano-satellites" Paper presented at the ESA-CNES Small Satellites Systems and Services (4S) Symp., Portorose, Slovenia (2012)
  368. Dudnikov V Istochniki Otritsatel’nykh Ionov (Novosibirsk: NGU, 2018)
  369. Dudnikov V Development And Applications Of Negative Ion Sources (Berlin: Springer, 2019)
  370. Dudnikov V G Usp. Fiz. Nauk 189 1315 (2019); Dudnikov V G Phys. Usp. 62 1233 (2019)
  371. Geller R Electron Cyclotron Resonance Ion Sources And ECR Plasmas 1st ed. (Bristol: Institute of Physics Publ., 1996)
  372. Donets E D Fiz. Elem. Chast. At. Yad. 13 941 (1982); Donets E D Sov. J. Part. Nucl. 13 388 (1982)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions