Issues

 / 

2020

 / 

December

  

Reviews of topical problems


Relativistic runaway electron avalanche


All-Russian Scientific Research Institute of Experimental Physics — Federal Nuclear Centre, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607190, Russian Federation

Discussed are the genesis of the concept of the relativistic runaway electron avalanche (RREA) and its mechanism as an analog of the Townsend's avalanche, but capable of developing, unlike the latter, in weak thundercloud electric fields. Thanks to this, it was possible to overcome difficulties while interpreting results of observations of penetrating emission enhancements in thunderstorm atmospheres. The main inelastic interactions of high-energy electrons with atomic particles participating in the avalanche development are described; in terms of the drag forces, the essence of the runaway process is discussed; and methods of RREA numerical simulation are described. In approximate historical sequence, results of calculations of the spatial and temporal scales of the avalanche enhancement are analyzed and contemporary data on avalanche macroscopic characteristics are given, which is required for numerical simulations of the runaway electrons in the fluid approximation. As an extension to the relativistic range of the mechanism of the classical cathode-directed streamer, relativistic positive feedback is discussed, by means of which a generation of the RREA series, as a self-sustained process, is supported. Laboratory experiments on RREA modeling are described, in one of which the initial stage of the avalanche was produced.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.04.038747
Keywords: relativistic avalanche, runaway electrons, kinetic equation, Monte Carlo methods, macroscopic characteristics, positive feedback, laboratory experiments
PACS: 52.80.Tn, 52.90.+z, 92.60.Pw (all)
DOI: 10.3367/UFNe.2020.04.038747
URL: https://ufn.ru/en/articles/2020/12/b/
000621721400002
2-s2.0-85102647324
2020PhyU...63.1188B
Citation: Babich L P "Relativistic runaway electron avalanche" Phys. Usp. 63 1188–1218 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, October 2019, revised: 15th, March 2020, 6th, April 2020

Оригинал: Бабич Л П «Лавина релятивистских убегающих электронов» УФН 190 1261–1292 (2020); DOI: 10.3367/UFNr.2020.04.038747

References (150) Cited by (10) Similar articles (20) ↓

  1. L.P. Babich “Thunderous neutrons62 976–999 (2019)
  2. L.P. Babich, T.V. Loiko, V.A. Tsukerman “High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electrons33 (7) 521–540 (1990)
  3. A.V. Gurevich, K.P. Zybin “Runaway breakdown and electric discharges in thunderstorms44 1119–1140 (2001)
  4. L.D. Tsendin “Nonlocal electron kinetics in gas-discharge plasma53 133–157 (2010)
  5. B.M. Smirnov “Electrical cycle in the Earth’s atmosphere57 1041–1062 (2014)
  6. V.V. Osipov “Self-sustained volume discharge43 221 (2000)
  7. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  8. B.M. Smirnov “Physics of ball lightning33 (4) 261–288 (1990)
  9. L.M. Vasilyak, S.V. Kostyuchenko et alFast ionisation waves under electrical breakdown conditions37 247–268 (1994)
  10. V.N. Tsytovich “Self-organized dusty structures in a complex plasma under microgravity conditions: prospects for experimental and theoretical studies58 150–166 (2015)
  11. L.N. Pyatnitskii “Optical discharge in the field of a Bessel laser beam53 159–177 (2010)
  12. V.N. Tsytovich, R. Bingham et alCollective plasma processes in the solar interior and the problem of the solar neutrinos deficit39 103–128 (1996)
  13. B.M. Smirnov “Observational properties of ball lightning35 (8) 650–670 (1992)
  14. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  15. M.I. Panasyuk, L.I. Miroshnichenko “Particle acceleration in space: a universal mechanism?65 379–405 (2022)
  16. M.Ya. Marov, I.I. Shevchenko “Exoplanets: nature and models63 837–871 (2020)
  17. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)63 1015–1036 (2020)
  18. A.V. Eletskii, B.M. Smirnov “Nonuniform gas discharge plasma39 1137–1156 (1996)
  19. P.B. Ivanov, E.V. Mikheeva et alInterferometric observations of supermassive black holes in the millimeter wave band62 423–449 (2019)
  20. I.S. Aranson “Topological defects in active liquid crystals62 892–909 (2019)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions