Issues

 / 

2020

 / 

December

  

Reviews of topical problems


Relativistic runaway electron avalanche


All-Russian Scientific Research Institute of Experimental Physics — Federal Nuclear Centre, prosp. Mira 37, Sarov, Nizhny Novgorod region, 607190, Russian Federation

Discussed are the genesis of the concept of the relativistic runaway electron avalanche (RREA) and its mechanism as an analog of the Townsend's avalanche, but capable of developing, unlike the latter, in weak thundercloud electric fields. Thanks to this, it was possible to overcome difficulties while interpreting results of observations of penetrating emission enhancements in thunderstorm atmospheres. The main inelastic interactions of high-energy electrons with atomic particles participating in the avalanche development are described; in terms of the drag forces, the essence of the runaway process is discussed; and methods of RREA numerical simulation are described. In approximate historical sequence, results of calculations of the spatial and temporal scales of the avalanche enhancement are analyzed and contemporary data on avalanche macroscopic characteristics are given, which is required for numerical simulations of the runaway electrons in the fluid approximation. As an extension to the relativistic range of the mechanism of the classical cathode-directed streamer, relativistic positive feedback is discussed, by means of which a generation of the RREA series, as a self-sustained process, is supported. Laboratory experiments on RREA modeling are described, in one of which the initial stage of the avalanche was produced.

Fulltext pdf (1 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2020.04.038747
Keywords: relativistic avalanche, runaway electrons, kinetic equation, Monte Carlo methods, macroscopic characteristics, positive feedback, laboratory experiments
PACS: 52.80.Tn, 52.90.+z, 92.60.Pw (all)
DOI: 10.3367/UFNe.2020.04.038747
URL: https://ufn.ru/en/articles/2020/12/b/
000621721400002
2-s2.0-85102647324
2020PhyU...63.1188B
Citation: Babich L P "Relativistic runaway electron avalanche" Phys. Usp. 63 1188–1218 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 29th, October 2019, revised: 15th, March 2020, 6th, April 2020

Îðèãèíàë: Áàáè÷ Ë Ï «Ëàâèíà ðåëÿòèâèñòñêèõ óáåãàþùèõ ýëåêòðîíîâ» ÓÔÍ 190 1261–1292 (2020); DOI: 10.3367/UFNr.2020.04.038747

References (150) Cited by (11) Similar articles (20) ↓

  1. L.P. Babich “Thunderous neutronsPhys. Usp. 62 976–999 (2019)
  2. L.P. Babich, T.V. Loiko, V.A. Tsukerman “High-voltage nanosecond discharge in a dense gas at a high overvoltage with runaway electronsSov. Phys. Usp. 33 (7) 521–540 (1990)
  3. A.V. Gurevich, K.P. Zybin “Runaway breakdown and electric discharges in thunderstormsPhys. Usp. 44 1119–1140 (2001)
  4. L.D. Tsendin “Nonlocal electron kinetics in gas-discharge plasmaPhys. Usp. 53 133–157 (2010)
  5. B.M. Smirnov “Electrical cycle in the Earth’s atmospherePhys. Usp. 57 1041–1062 (2014)
  6. V.V. Osipov “Self-sustained volume dischargePhys. Usp. 43 221 (2000)
  7. V.V. Brazhkin “Ultrahard nanomaterials: myths and realityPhys. Usp. 63 523–544 (2020)
  8. B.M. Smirnov “Physics of ball lightningSov. Phys. Usp. 33 (4) 261–288 (1990)
  9. L.M. Vasilyak, S.V. Kostyuchenko et alFast ionisation waves under electrical breakdown conditionsPhys. Usp. 37 247–268 (1994)
  10. V.N. Tsytovich “Self-organized dusty structures in a complex plasma under microgravity conditions: prospects for experimental and theoretical studiesPhys. Usp. 58 150–166 (2015)
  11. L.N. Pyatnitskii “Optical discharge in the field of a Bessel laser beamPhys. Usp. 53 159–177 (2010)
  12. V.N. Tsytovich, R. Bingham et alCollective plasma processes in the solar interior and the problem of the solar neutrinos deficitPhys. Usp. 39 103–128 (1996)
  13. B.M. Smirnov “Observational properties of ball lightningSov. Phys. Usp. 35 (8) 650–670 (1992)
  14. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gasesPhys. Usp. 62 215–248 (2019)
  15. M.I. Panasyuk, L.I. Miroshnichenko “Particle acceleration in space: a universal mechanism?Phys. Usp. 65 379–405 (2022)
  16. M.Ya. Marov, I.I. Shevchenko “Exoplanets: nature and modelsPhys. Usp. 63 837–871 (2020)
  17. A.I. Savvatimskii, S.V. Onufriev “Investigation of the physical properties of carbon under high temperatures (experimental studies)Phys. Usp. 63 1015–1036 (2020)
  18. A.V. Eletskii, B.M. Smirnov “Nonuniform gas discharge plasmaPhys. Usp. 39 1137–1156 (1996)
  19. P.B. Ivanov, E.V. Mikheeva et alInterferometric observations of supermassive black holes in the millimeter wave bandPhys. Usp. 62 423–449 (2019)
  20. I.S. Aranson “Topological defects in active liquid crystalsPhys. Usp. 62 892–909 (2019)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions