Issues

 / 

2020

 / 

October

  

Reviews of topical problems


Conductivity of quantum dot arrays

 
Ioffe Institute, ul. Polytekhnicheskaya 26, St. Petersburg, 194021, Russian Federation

Arrays of quantum dots (QDs), i.e., semiconducting nanoparticles with typical sizes of 3&madsh;10 nm, have become more than merely an object of scientific research; they are now used in electronic devices. They are appealing mainly due to their optical properties, which depend on the QD size. Here, we consider the electronic properties of such arrays. These properties typically inherit the properties of bulk semiconductors, but in some cases can be substantially different due to the discreteness of sizes and a particular type of disorder in the array: the difference in size and spacing among QDs, as well as the number of donors. Notably, in such arrays, the metal—dielectric transition occurs at a much higher concentration of donors than in the bulk material. The nature of hopping conductivity in the dielectric phase strongly depends on the disorder type, quantum confinement effects, the Coulomb blockade, and the overlap integral of QDs.

Fulltext pdf (962 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2019.08.038649
Keywords: quantum dot, nanoparticle, quantum confinement, electron transport, metal—insulator transition, Coulomb interaction, Coulomb blockade
PACS: 71.30.+h, 72.10.−d, 72.15.Rn, 72.20.Ee, 72.80.Ng, 73.21.La, 73.22.−f, 73.23.Hk, 73.40.Gk, 81.07.Bc (all)
DOI: 10.3367/UFNe.2019.08.038649
URL: https://ufn.ru/en/articles/2020/10/c/
000604419100003
2-s2.0-85099885694
2020PhyU...63..994R
Citation: Reich K V "Conductivity of quantum dot arrays" Phys. Usp. 63 994–1014 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, July 2019, revised: 25th, August 2019, 28th, August 2019

Оригинал: Рейх К В «Электропроводность массива квантовых точек» УФН 190 1062–1084 (2020); DOI: 10.3367/UFNr.2019.08.038649

References (142) Cited by (3) Similar articles (20) ↓

  1. V.T. Dolgopolov “Two-dimensional system of strongly interacting electrons in silicon (100) structures62 633–648 (2019)
  2. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systems55 325–355 (2012)
  3. V.F. Gantmakher, V.T. Dolgopolov “Localized-delocalized electron quantum phase transitions51 3–22 (2008)
  4. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  5. L.A. Chernozatonskii, A.A. Artyukh “Quasi-two-dimensional transition metal dichalcogenides: structure, synthesis, properties and applications61 2–28 (2018)
  6. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructures56 105–122 (2013)
  7. A.A. Ovchinnikov, I.I. Ukrainskii, G.V. Kventsel’ “Theory of one-dimensional mott semiconductors and the electronic structure of long molecules having conjugated bonds15 575–591 (1973)
  8. A.A. Likal’ter “Critical points of condensation in Coulomb systems43 777–797 (2000)
  9. A.A. Likal’ter “Gaseous metals35 (7) 591–605 (1992)
  10. D.I. Khomskii “The problem of intermediate valency22 879–903 (1979)
  11. V.A. Alekseev, A.A. Andreev, V.Ya. Prokhorenko “Electric Properties of Liquid Metals and Semiconductors15 139–158 (1972)
  12. E.G. Maksimov, Yu.I. Shilov “Hydrogen at high pressure42 1121–1138 (1999)
  13. E.L. Nagaev “Small metal particles35 (9) 747–782 (1992)
  14. B.I. Belevtsev “Superconductivity and localization of electrons in disordered two-dimensional metal systems33 (1) 36–54 (1990)
  15. I.K. Gainullin “Resonant charge transfer during ion scattering on metallic surfaces63 888–906 (2020)
  16. Yu.S. Orlov, S.V. Nikolaev et alFeatures of spin crossovers in magnetic materials66 647–672 (2023)
  17. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  18. V.T. Dolgopolov “Integer quantum Hall effect and related phenomena57 105–127 (2014)
  19. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transport54 1007–1059 (2011)
  20. I.S. Lyubutin, A.G. Gavriliuk “Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the art52 989–1017 (2009)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions