Issues

 / 

2020

 / 

January

  

Reviews of topical problems


Localized modes in chiral photonic structures

 a, b,  a, b,  a
a Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Academgorodok 50, str. 38, Krasnoyarsk, 660036, Russian Federation
b Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660041, Russian Federation

We discuss chiral structures in self-organizing, artificial and biological materials. A review of experimental studies and recent advances in the localization of light in chiral structures is given. The behavior of polarized resonant modes in such structures is examined using the example of a one-dimensional photonic crystal containing liquid crystal materials. The anomalous spectral shifts of transmission peaks are interpreted as the contribution of the geometric phase caused by the twisting of the layers of the liquid crystal. The optical Tamm state localized at the boundary between chiral and nonchiral mirrors in the form of a cholesteric layer and a polarization-preserving anisotropic mirror is analytically and numerically described. Considerable attention is paid to the presentation of the properties of localized optical modes in the cholesteric with a resonant metal-dielectric nanocomposite. New possibilities for controlling the properties of the photonic structure are noted, due to the combination of the dispersion of the resonant medium and the intrinsic dispersion of the cholesteric. Attention is paid to controlled hybrid modes in the cholesteric structure formed by the coupling of localized modes. Possible applications and further ways of developing the concept of chiral photonic structures are deliberated.

Fulltext pdf (1.5 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.11.038490
Keywords: light localization, photonic crystals, chirality, chiral nematic liquid crystal, Pancharatnam--Berry geometric phase, avoided crossing of coupled modes, cholesteric liquid crystal, optical Tamm states, nanocomposite, resonant frequency dispersion, hybrid modes
PACS: 42.60.Da, 42.70.Df, 42.70.Qs, 42.79.Ci, 42.87.Bg, 61.30.Gd (all)
DOI: 10.3367/UFNe.2018.11.038490
URL: https://ufn.ru/en/articles/2020/1/c/
000537855600003
2-s2.0-85085252846
2020PhyU...63...33V
Citation: Vetrov S Ya, Timofeev I V, Shabanov V F "Localized modes in chiral photonic structures" Phys. Usp. 63 33–56 (2020)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, September 2018, 29th, November 2018

Оригинал: Ветров С Я, Тимофеев И В, Шабанов В Ф «Локализованные моды в хиральных фотонных структурах» УФН 190 37–62 (2020); DOI: 10.3367/UFNr.2018.11.038490

References (231) Cited by (22) Similar articles (20) ↓

  1. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)Phys. Usp. 62 823–838 (2019)
  2. A.P. Vinogradov, A.V. Dorofeenko et alSurface states in photonic crystalsPhys. Usp. 53 243–256 (2010)
  3. V.A. Belyakov, V.E. Dmitrienko, V.P. Orlov “Optics of cholesteric liquid crystalsSov. Phys. Usp. 22 64–88 (1979)
  4. M.A. Remnev, V.V. Klimov “Metasurfaces: a new look at Maxwell's equations and new ways to control lightPhys. Usp. 61 157–190 (2018)
  5. M.V. Davidovich “Hyperbolic metamaterials: production, properties, applications, and prospectsPhys. Usp. 62 1173–1207 (2019)
  6. A.V. Dorofeenko, A.A. Zyablovsky et alLight propagation in composite materials with gain layersPhys. Usp. 55 1080–1097 (2012)
  7. V.V. Klimov “Control of the emission of elementary quantum systems using metamaterials and nanometaparticlesPhys. Usp. 64 990–1020 (2021)
  8. S.I. Lepeshov, A.E. Krasnok et alHybrid nanophotonicsPhys. Usp. 61 1035–1050 (2018)
  9. K.L. Koshelev, Z.F. Sadrieva et alBound states in the continuum in photonic structuresPhys. Usp. 66 494–517 (2023)
  10. S.M. Arakelyan “Optical bistability, multistability, and instabilities in liquid crystalsSov. Phys. Usp. 30 1041–1064 (1987)
  11. N.A. Veretenov, N.N. Rosanov, S.V. Fedorov “Laser solitons: topological and quantum phenomenaPhys. Usp. 65 131–162 (2022)
  12. K.V. Baryshnikova, S.S. Kharintsev et alMetalenses for subwavelength imagingPhys. Usp. 65 355–378 (2022)
  13. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistryPhys. Usp. 61 645–691 (2018)
  14. M.V. Kurik, O.D. Lavrentovich “Defects in liquid crystals: homotopy theory and experimental studiesSov. Phys. Usp. 31 196–224 (1988)
  15. V.I. Balykin, P.N. Melentiev “Optics and spectroscopy of a single plasmonic nanostructurePhys. Usp. 61 133–156 (2018)
  16. D.N. Klyshko “Berry geometric phase in oscillatory processesPhys. Usp. 36 (11) 1005–1019 (1993)
  17. G.S. Chilaya, V.G. Chigrinov “Optics and electrooptics of chiral smectic C liquid crystalsPhys. Usp. 36 (10) 909–932 (1993)
  18. B.Ya. Zel’dovich, N.V. Tabiryan “Orientational optical nonlinearity of liquid crystalsSov. Phys. Usp. 28 1059–1083 (1985)
  19. G.S. Chilaya, L.N. Lisetskii “Helical twist in cholesteric mesophasesSov. Phys. Usp. 24 496–510 (1981)
  20. I.S. Aranson “Topological defects in active liquid crystalsPhys. Usp. 62 892–909 (2019)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions