Issues

 / 

2019

 / 

May

  

Methodological notes


Relaxation of interacting open quantum systems

 a, b, c,  a, b,  a, b, c,  c, a, b,  d, e
a Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Dukhov Research Institute of Automatics, ul. Sushchevskaya 22, Moscow, 119017, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d Department of Physics, Queens College of the City University of New York, Flushing, New York, USA
e The Graduate Center of the City University of New York, Fifth Avenue 365, New York, NY, 10016-4309, USA

We consider a transition from the description of a closed quantum system that includes an open quantum system and a reservoir to the description of an open quantum system alone by eliminating reservoir degrees of freedom by averaging over them. An approach based on the Lindblad master equation for the density matrix is used. A general scheme for deriving the Lindblad superoperator that emerges after averaging the von Neumann equation over the reservoir degrees of freedom is developed. This scheme is illustrated by the cases of radiation of a two-level atom into free space and the dynamics of the transition of a two-level atom from the pure state to the mixed state due to the interaction with a dephasing reservoir. Special attention is paid to the open system consisting of several subsystems each of which independently interacts with the reservoir. In the case of noninteracting subsystems, the density matrix is a tensor product of the subsystem density matrices, and the Lindblad superoperator of the system is a sum of Lindblad superoperators of those subsystems. The interaction between the subsystems results not only in the emergence of the corresponding term in the Hamiltonian of the combined system but also in non-additivity of the Lindblad superoperators. The latter is often overlooked in modern literature possibly leading, as it is shown in the present methodological note, to serious errors; for example, the second law of thermodynamics could be violated.

Fulltext pdf (668 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.06.038359
Keywords: open quantum systems, Lindblad master equation, second law of thermodynamics
PACS: 03.65.Yz, 05.30.−d (all)
DOI: 10.3367/UFNe.2018.06.038359
URL: https://ufn.ru/en/articles/2019/5/f/
000477641200006
2-s2.0-85072512703
2019PhyU...62..510S
Citation: Shishkov V Yu, Andrianov E S, Pukhov A A, Vinogradov A P, Lisyansky A A "Relaxation of interacting open quantum systems" Phys. Usp. 62 510–523 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, February 2018, revised: 16th, April 2018, 7th, June 2018

Оригинал: Шишков В Ю, Андрианов Е С, Пухов А А, Виноградов А П, Лисянский А А «Релаксация взаимодействующих открытых квантовых систем» УФН 189 544–558 (2019); DOI: 10.3367/UFNr.2018.06.038359

References (47) Cited by (23) Similar articles (20) ↓

  1. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)
  2. E.V. Shuryak “Stochastic trajectory generation by computerSov. Phys. Usp. 27 448–453 (1984)
  3. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherencePhys. Usp. 61 1016–1025 (2018)
  4. A.N. Rubtsov “On the question of measurement in quantum mechanicsPhys. Usp. 66 734–740 (2023)
  5. A.B. Brailovskii, V.L. Vaks, V.V. Mityugov “Quantum models of relaxationPhys. Usp. 39 745–750 (1996)
  6. A.V. Eletskii, A.N. Starostin, M.D. Taran “Quantum corrections to the equilibrium rate constants of inelastic processesPhys. Usp. 48 281–294 (2005)
  7. B.B. Kadomtsev “Irreversibility in quantum mechanicsPhys. Usp. 46 1183–1201 (2003)
  8. Yu.N. Barabanenkov, S.A. Nikitov, M.Yu. Barabanenkov “Quantum fluctuations in magnetic nanostructuresPhys. Usp. 62 82–91 (2019)
  9. D.N. Zubarev, Yu.G. Rudoi “On the evaluation of the correlation functions in quantum statistical physicsPhys. Usp. 36 (3) 188–191 (1993)
  10. V.L. Ginzburg, L.P. Pitaevskii “Quantum Nyquist formula and the applicability ranges of the Callen-Welton formulaSov. Phys. Usp. 30 168–171 (1987)
  11. S.M. Stishov “On the thermodynamics of simple systemsPhys. Usp. 67 912–918 (2024)
  12. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillationsPhys. Usp. 46 293–307 (2003)
  13. G.A. Vardanyan, G.S. Mkrtchyan “A solution to the density matrix equationSov. Phys. Usp. 33 (12) 1072–1072 (1990)
  14. A.P. Vinogradov “On the form of constitutive equations in electrodynamicsPhys. Usp. 45 331–338 (2002)
  15. V.P. Bykov, V.I. Tatarskii “Perturbation theory for resolvents as applied to problems in radiation theorySov. Phys. Usp. 34 (2) 167–184 (1991)
  16. L.A. Vainshtein “Propagation of pulsesSov. Phys. Usp. 19 189–205 (1976)
  17. A.P. Vinogradov, A.V. Dorofeenko, S. Zouhdi “On the problem of the effective parameters of metamaterialsPhys. Usp. 51 485–492 (2008)
  18. M.V. Kuzelev, A.A. Rukhadze “On the quantum description of the linear kinetics of a collisionless plasmaPhys. Usp. 42 603–605 (1999)
  19. E.P. Zemskov “Turing patterns and Newell—Whitehead—Segel amplitude equationPhys. Usp. 57 1035–1037 (2014)
  20. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions