Issues

 / 

2019

 / 

May

  

Methodological notes


Relaxation of interacting open quantum systems

 a, b, c,  a, b,  a, b, c,  c, a, b,  d, e
a Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation
b Dukhov Research Institute of Automatics, ul. Sushchevskaya 22, Moscow, 119017, Russian Federation
c Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
d Department of Physics, Queens College of the City University of New York, Flushing, New York, USA
e The Graduate Center of the City University of New York, Fifth Avenue 365, New York, NY, 10016-4309, USA

We consider a transition from the description of a closed quantum system that includes an open quantum system and a reservoir to the description of an open quantum system alone by eliminating reservoir degrees of freedom by averaging over them. An approach based on the Lindblad master equation for the density matrix is used. A general scheme for deriving the Lindblad superoperator that emerges after averaging the von Neumann equation over the reservoir degrees of freedom is developed. This scheme is illustrated by the cases of radiation of a two-level atom into free space and the dynamics of the transition of a two-level atom from the pure state to the mixed state due to the interaction with a dephasing reservoir. Special attention is paid to the open system consisting of several subsystems each of which independently interacts with the reservoir. In the case of noninteracting subsystems, the density matrix is a tensor product of the subsystem density matrices, and the Lindblad superoperator of the system is a sum of Lindblad superoperators of those subsystems. The interaction between the subsystems results not only in the emergence of the corresponding term in the Hamiltonian of the combined system but also in non-additivity of the Lindblad superoperators. The latter is often overlooked in modern literature possibly leading, as it is shown in the present methodological note, to serious errors; for example, the second law of thermodynamics could be violated.

Fulltext pdf (668 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.06.038359
Keywords: open quantum systems, Lindblad master equation, second law of thermodynamics
PACS: 03.65.Yz, 05.30.−d (all)
DOI: 10.3367/UFNe.2018.06.038359
URL: https://ufn.ru/en/articles/2019/5/f/
000477641200006
2-s2.0-85072512703
2019PhyU...62..510S
Citation: Shishkov V Yu, Andrianov E S, Pukhov A A, Vinogradov A P, Lisyansky A A "Relaxation of interacting open quantum systems" Phys. Usp. 62 510–523 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 19th, February 2018, revised: 16th, April 2018, 7th, June 2018

Оригинал: Шишков В Ю, Андрианов Е С, Пухов А А, Виноградов А П, Лисянский А А «Релаксация взаимодействующих открытых квантовых систем» УФН 189 544–558 (2019); DOI: 10.3367/UFNr.2018.06.038359

References (47) ↓ Cited by (23) Similar articles (20)

  1. Weisskopf V, Wigner E Z. Phys. 63 54 (1930)
  2. Khanin Ya I Osnovy Dinamiki Lazerov (M.: Fizmatlit, 1999)
  3. Lamb W E (Jr.) Phys. Rev. 134 A1429 (1964)
  4. Gorini V, Kossakowski A, Sudarshan E C G J. Math. Phys. 17 821 (1976)
  5. Lindblad G Commun. Math. Phys. 48 119 (1976)
  6. Biggerstaff D N et al Nature Commun. 7 11282 (2016)
  7. Caruso F et al J. Chem. Phys. 131 09B612 (2009)
  8. Caruso F et al Nature Commun. 7 11682 (2016)
  9. Caruso F et al Phys. Rev. B 85 125424 (2012)
  10. Caruso F et al Phys. Rev. A 83 013811 (2011)
  11. Chin A W et al Nature Phys. 9 113 (2013)
  12. Cifuentes A A, Semião F L Phys. Rev. A 95 062302 (2017)
  13. Contreras-Pulido L D et al New J. Phys. 16 113061 (2014)
  14. Feist J, Garcia-Vidal F J Phys. Rev. Lett. 114 196402 (2015)
  15. Hartmann L, Dür W, Briegel H-J Phys. Rev. A 74 052304 (2006)
  16. Kassal I, Aspuru-Guzik A New J. Phys. 14 053041 (2012)
  17. Plenio M B, Huelga S F New J. Phys. 10 113019 (2008)
  18. Rebentrost P et al New J. Phys. 11 033003 (2009)
  19. Vaziri A, Plenio M B New J. Phys. 12 085001 (2010)
  20. Breuer H-P, Petruccione F The Theory Of Open Quantum Systems (Oxford: Oxford Univ. Press, 2002); Per. na russk. yaz., Broier Kh-P, Petruchchione F Teoriya Otkrytykh Kvantovykh Sistem (M. - Izhevsk: Institut komp’yut. issled., RKhD, 2010)
  21. Davies E B Commun. Math. Phys. 39 91 (1974)
  22. Davies E B Math. Ann. 219 147 (1976)
  23. Landau L D, Lifshits E M Kvantovaya Mekhanika. Nerelyativistskaya Teoriya (M.: Nauka, 1963); Per. na angl. yaz., Landau L D, Lifshitz E M Quantum Mechanics. Non-Relativistic Theory (Oxford: Pergamon Press, 1977)
  24. Scully M O, Zubairy M S Quantum Optics (Cambridge: Cambridge Univ. Press, 1997); Per. na russk. yaz., Skalli M O, Zubairi M S Kvantovaya Optika (M.: Fizmatlit, 2002)
  25. Kubo R J. Phys. Soc. Jpn. 12 570 (1957)
  26. Martin P C, Schwinger J Phys. Rev. 115 1342 (1959)
  27. Spohn H, Lebowitz J L Adv. Chem. Phys. 38 109 (1978)
  28. Kosloff R Entropy 15 2100 (2013)
  29. Spohn H Rev. Mod. Phys. 52 569 (1980)
  30. Carmichael H J Statistical Methods In Quantum Optics 2. Non-Classical Fields (New York: Springer, 2009)
  31. Alessi A, Salvalaggio M, Ruzzon G J. Luminescence 134 385 (2013)
  32. Beija M, Afonso C A M, Martinho J M G Chem. Soc. Rev. 38 2410 (2009)
  33. Noginov M A et al Nature 460 1110 (2009)
  34. Wuestner S et al Phys. Rev. Lett. 105 127401 (2010)
  35. Weiss U Quantum Dissipative Systems (Singapore: World Scientific, 2012)
  36. Siegman A E Lasers (Mill Valley, Calif.: Univ. Science Books, 1986)
  37. Karlov N V Lektsii Po Kvantovoi Elektronike (M.: Nauka, 1988); Per. na angl. yaz., Karlov N V Lectures On Quantum Electronics (Moscow: Mir Publ., 1993)
  38. Meystre P, Sargent M (III) Elements Of Quantum Optics (Berlin: Springer, 2013)
  39. Mandel L, Wolf E Optical Coherence And Quantum Optics (Cambridge: Cambridge Univ. Press, 1995); Per. na russk. yaz., Mandel’ L, Vol’f E Opticheskaya Kogerentnost’ i Kvantovaya Optika (M.: Fizmatlit, 2000)
  40. Chubchev E D et al J. Phys. B 50 175401 (2017)
  41. Szczygielski K, Gelbwaser-Klimovsky D, Alicki R Phys. Rev. E 87 012120 (2013)
  42. Rivas A, Oxtoby N P, Huelga S F Eur. Phys. J. B 69 51 (2009)
  43. Waks E, Sridharan D Phys. Rev. A 82 043845 (2010)
  44. He Y, Li J-J, Zhu K-D J. Opt. Soc. Am. B 29 997 (2012)
  45. Tasgin M E Nanoscale 5 8616 (2013)
  46. Levi F et al Rep. Prog. Phys. 78 082001 (2015)
  47. Levy A, Kosloff R Europhys. Lett. 107 20004 (2014)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions