Issues

 / 

2019

 / 

March

  

Reviews of topical problems


BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases

 a, b,  c, d
a P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
b HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
c Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
d N.I. Lobachevskii Nizhnii Novgorod State University, prosp. Gagarina 23, Nizhnii Novgorod, Russian Federation

A Fermi gas described within the Bardeen—Cooper—Schrieffer theory (BCS) may be converted into a Bose—Einstein condensate (BEC) of composite molecules (dimers) by adiabatically tuning interaction. The sequence of the states that emerges in the process of such a conversion is referred to as the BCS—BEC crossover. We review here the theoretical and experimental results obtained for the BCS—BEC crossover in three- and quasi-two-dimensional quantum gases in the limiting geometry of traps and on optical lattices. We discuss nontrivial phenomena in the hydrodynamics of the superfluid quantum gases and fluids including the collective excitation spectrum in the BCS—BEC crossover, hydrodynamics of the rotating Bose condensates containing a large number of quantized vortices, and the involved and yet unresolved problem of the chiral anomaly in the hydrodynamics of superfluid Fermi systems with an anisotropic p-wave pairing. We also analyze spin-imbalanced quantum gases and the possibilities to realize the triplet p-wave pairing via the Kohn—Luttinger mechanism in those gases. Recent results on two-dimensional Fermi-gas preparation and observation of the fluctuational phenomena related to the Berezinskii—Kosterlitz—Thouless transition in those gases are also reviewed. We briefly discuss the recent experimental discovery of the BCS—BEC crossover and anomalous superconductivity in bilayer graphene and the role of graphene, other Dirac semimetals (such as, for example, bismuth), and 2D optical lattices as potential reference systems that exhibit all of the effects reviewed here.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.10.038471
Keywords: BCS-BEC crossover, hydrodynamics of superfluid quantum fluids and gases, Feshbach resonance, composite fermions and bosons, rotating Bose condensates, chiral anomaly, fermion Goldstone mode, collective excitation spectrum, imbalanced Fermi gas, anomalous pairing, Kohn-Luttinger mechanism, Berezinskii-Kosterlitz-Thouless transition, bilayer graphene
PACS: 03.75.Hh, 67.10.−j, 74.20.−z, 74.25.Uv (all)
DOI: 10.3367/UFNe.2018.10.038471
URL: https://ufn.ru/en/articles/2019/3/a/
000469214700001
2-s2.0-85070731309
2019PhyU...62..215K
Citation: Kagan M Yu, Turlapov A V "BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases" Phys. Usp. 62 215–248 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, January 2018, revised: 3rd, October 2018, 31st, October 2018

Оригинал: Каган М Ю, Турлапов А В «Кроссовер БКШ—БЭК, коллективные возбуждения и гидродинамика сверхтекучих квантовых жидкостей и газов» УФН 189 225–261 (2019); DOI: 10.3367/UFNr.2018.10.038471

References (344) Cited by (33) Similar articles (20) ↓

  1. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systemsPhys. Usp. 58 733–761 (2015)
  2. V.V. Val’kov, D.M. Dzebisashvili et alSpin-polaron concept in the theory of normal and superconducting states of cupratesPhys. Usp. 64 641–670 (2021)
  3. V.E. Zakharov, E.A. Kuznetsov “Solitons and collapses: two evolution scenarios of nonlinear wave systemsPhys. Usp. 55 535–556 (2012)
  4. L.V. Kulik, A.V. Gorbunov et alSpin excitations in two-dimensional electron gas, their relaxation, photoexcitation and detection methods, and the role of Coulomb correlationsPhys. Usp. 62 865–891 (2019)
  5. V.V. Val’kov, M.S. Shustin et alTopological superconductivity and Majorana states in low-dimensional systemsPhys. Usp. 65 2–39 (2022)
  6. M.M. Glazov, R.A. Suris “Collective states of excitons in semiconductorsPhys. Usp. 63 1051–1071 (2020)
  7. A.P. Protogenov “Anyon superconductivity in strongly-correlated spin systemsSov. Phys. Usp. 35 (7) 535–571 (1992)
  8. V.F. Gantmakher, V.T. Dolgopolov “Superconductor-insulator quantum phase transitionPhys. Usp. 53 1–49 (2010)
  9. Yu.A. Izyumov “Magnetism and superconductivity in strongly correlated systemsSov. Phys. Usp. 34 (11) 935–957 (1991)
  10. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospectsPhys. Usp. 61 1139–1174 (2018)
  11. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistryPhys. Usp. 61 645–691 (2018)
  12. V.B. Efimov “Quantum turbulence in superfluid heliumPhys. Usp. 66 59–89 (2023)
  13. G.N. Makarov “Spectroscopy of single molecules and clusters inside helium nanodroplets. Microscopic manifestation of 4He superfluidityPhys. Usp. 47 217–247 (2004)
  14. S.S. Gavrilov “Nonequilibrium transitions, chaos, and chimera states in exciton—polariton systemsPhys. Usp. 63 123–144 (2020)
  15. V.N. Ryzhov, E.E. Tareyeva et alComplex phase diagrams of systems with isotropic potentials: results of computer simulationsPhys. Usp. 63 417–439 (2020)
  16. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional meltingPhys. Usp. 60 857–885 (2017)
  17. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transportPhys. Usp. 54 1007–1059 (2011)
  18. D.N. Klyshko “Basic quantum mechanical concepts from the operational viewpointPhys. Usp. 41 885–922 (1998)
  19. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theoriesPhys. Usp. 38 591–607 (1995)
  20. D.M. Sedrakyan, K.M. Shakhabasyan “Superfluidity and the magnetic field of pulsarsSov. Phys. Usp. 34 (7) 555–571 (1991)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions