Reviews of topical problems

BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases

 a, b,  c, d
a Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
b National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
c Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
d N.I. Lobachevskii Nizhnii Novgorod State University, prosp. Gagarina 23, Nizhnii Novgorod, Russian Federation

A Fermi gas described within the Bardeen—Cooper—Schrieffer theory (BCS) may be converted into a Bose—Einstein condensate (BEC) of composite molecules (dimers) by adiabatically tuning interaction. The sequence of the states that emerges in the process of such a conversion is referred to as the BCS—BEC crossover. We review here the theoretical and experimental results obtained for the BCS—BEC crossover in three- and quasi-two-dimensional quantum gases in the limiting geometry of traps and on optical lattices. We discuss nontrivial phenomena in the hydrodynamics of the superfluid quantum gases and fluids including the collective excitation spectrum in the BCS—BEC crossover, hydrodynamics of the rotating Bose condensates containing a large number of quantized vortices, and the involved and yet unresolved problem of the chiral anomaly in the hydrodynamics of superfluid Fermi systems with an anisotropic p-wave pairing. We also analyze spin-imbalanced quantum gases and the possibilities to realize the triplet p-wave pairing via the Kohn—Luttinger mechanism in those gases. Recent results on two-dimensional Fermi-gas preparation and observation of the fluctuational phenomena related to the Berezinskii—Kosterlitz—Thouless transition in those gases are also reviewed. We briefly discuss the recent experimental discovery of the BCS—BEC crossover and anomalous superconductivity in bilayer graphene and the role of graphene, other Dirac semimetals (such as, for example, bismuth), and 2D optical lattices as potential reference systems that exhibit all of the effects reviewed here.

Fulltext is available at IOP
Keywords: BCS-BEC crossover, hydrodynamics of superfluid quantum fluids and gases, Feshbach resonance, composite fermions and bosons, rotating Bose condensates, chiral anomaly, fermion Goldstone mode, collective excitation spectrum, imbalanced Fermi gas, anomalous pairing, Kohn-Luttinger mechanism, Berezinskii-Kosterlitz-Thouless transition, bilayer graphene
PACS: 03.75.Hh, 67.10.−j, 74.20.−z, 74.25.Uv (all)
DOI: 10.3367/UFNe.2018.10.038471
Citation: Kagan M Yu, Turlapov A V "BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases" Phys. Usp. 62 215–248 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, January 2018, revised: 3rd, October 2018, 31st, October 2018

Оригинал: Каган М Ю, Турлапов А В «Кроссовер БКШ—БЭК, коллективные возбуждения и гидродинамика сверхтекучих квантовых жидкостей и газов» УФН 189 225–261 (2019); DOI: 10.3367/UFNr.2018.10.038471

References (344) Cited by (14) Similar articles (20) ↓

  1. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systems58 733–761 (2015)
  2. V.V. Val’kov, D.M. Dzebisashvili et alSpin-polaron concept in the theory of normal and superconducting states of cuprates64 641–670 (2021)
  3. L.V. Kulik, A.V. Gorbunov et alSpin excitations in two-dimensional electron gas, their relaxation, photoexcitation and detection methods, and the role of Coulomb correlations62 865–891 (2019)
  4. M.M. Glazov, R.A. Suris “Collective states of excitons in semiconductors63 1051–1071 (2020)
  5. V.F. Gantmakher, V.T. Dolgopolov “Superconductor-insulator quantum phase transition53 1–49 (2010)
  6. V.E. Zakharov, E.A. Kuznetsov “Solitons and collapses: two evolution scenarios of nonlinear wave systems55 535–556 (2012)
  7. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry61 645–691 (2018)
  8. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  9. G.N. Makarov “Spectroscopy of single molecules and clusters inside helium nanodroplets. Microscopic manifestation of 4He superfluidity47 217–247 (2004)
  10. V.N. Ryzhov, E.E. Tareyeva et alComplex phase diagrams of systems with isotropic potentials: results of computer simulations63 417–439 (2020)
  11. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  12. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transport54 1007–1059 (2011)
  13. D.N. Klyshko “Basic quantum mechanical concepts from the operational viewpoint41 885–922 (1998)
  14. M.I. Polikarpov “Fractals, topological defects, and confinement in lattice gauge theories38 591–607 (1995)
  15. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  16. I.V. Kukushkin, V.B. Timofeev “Magneto-optics of two-dimensional electron systems in the ultraquantum limit: incompressible quantum liquids and the Wigner crystal36 (7) 549–571 (1993)
  17. Yu.A. Izyumov, E.Z. Kurmaev “FeAs systems: a new class of high-temperature superconductors51 1261–1286 (2008)
  18. V.T. Dolgopolov “Integer quantum Hall effect and related phenomena57 105–127 (2014)
  19. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  20. V.M. Murav’ev, I.V. Kukushkin “Collective plasma excitations in two-dimensional electron systems63 975–993 (2020)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions