Issues

 / 

2019

 / 

March

  

Reviews of topical problems


BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases

 a, b,  c, d
a P.L. Kapitza Institute for Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
b HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
c Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation
d N.I. Lobachevskii Nizhnii Novgorod State University, prosp. Gagarina 23, Nizhnii Novgorod, Russian Federation

A Fermi gas described within the Bardeen—Cooper—Schrieffer theory (BCS) may be converted into a Bose—Einstein condensate (BEC) of composite molecules (dimers) by adiabatically tuning interaction. The sequence of the states that emerges in the process of such a conversion is referred to as the BCS—BEC crossover. We review here the theoretical and experimental results obtained for the BCS—BEC crossover in three- and quasi-two-dimensional quantum gases in the limiting geometry of traps and on optical lattices. We discuss nontrivial phenomena in the hydrodynamics of the superfluid quantum gases and fluids including the collective excitation spectrum in the BCS—BEC crossover, hydrodynamics of the rotating Bose condensates containing a large number of quantized vortices, and the involved and yet unresolved problem of the chiral anomaly in the hydrodynamics of superfluid Fermi systems with an anisotropic p-wave pairing. We also analyze spin-imbalanced quantum gases and the possibilities to realize the triplet p-wave pairing via the Kohn—Luttinger mechanism in those gases. Recent results on two-dimensional Fermi-gas preparation and observation of the fluctuational phenomena related to the Berezinskii—Kosterlitz—Thouless transition in those gases are also reviewed. We briefly discuss the recent experimental discovery of the BCS—BEC crossover and anomalous superconductivity in bilayer graphene and the role of graphene, other Dirac semimetals (such as, for example, bismuth), and 2D optical lattices as potential reference systems that exhibit all of the effects reviewed here.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.10.038471
Keywords: BCS-BEC crossover, hydrodynamics of superfluid quantum fluids and gases, Feshbach resonance, composite fermions and bosons, rotating Bose condensates, chiral anomaly, fermion Goldstone mode, collective excitation spectrum, imbalanced Fermi gas, anomalous pairing, Kohn-Luttinger mechanism, Berezinskii-Kosterlitz-Thouless transition, bilayer graphene
PACS: 03.75.Hh, 67.10.−j, 74.20.−z, 74.25.Uv (all)
DOI: 10.3367/UFNe.2018.10.038471
URL: https://ufn.ru/en/articles/2019/3/a/
000469214700001
2-s2.0-85070731309
2019PhyU...62..215K
Citation: Kagan M Yu, Turlapov A V "BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases" Phys. Usp. 62 215–248 (2019)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 18th, January 2018, revised: 3rd, October 2018, 31st, October 2018

Îðèãèíàë: Êàãàí Ì Þ, Òóðëàïîâ À Â «Êðîññîâåð ÁÊØ—ÁÝÊ, êîëëåêòèâíûå âîçáóæäåíèÿ è ãèäðîäèíàìèêà ñâåðõòåêó÷èõ êâàíòîâûõ æèäêîñòåé è ãàçîâ» ÓÔÍ 189 225–261 (2019); DOI: 10.3367/UFNr.2018.10.038471

References (344) Cited by (33) ↓ Similar articles (20)

  1. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsSpace-Separated Fermi–Bose Mixtures in SC Bismuth Oxides (BaKBiO)201 Chapter 12 (2024) p. 257
  2. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsIntroduction. Spontaneously Formed Nanoscale Inhomogenieties in Different Materials201 Chapter 1 (2024) p. 1
  3. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsDisorder Effects and Phase Separation in Lattice Models, 2DEG, and Weyl Semimetals201 Chapter 16 (2024) p. 335
  4. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsDroplets Formation, BEC and Superconductivity in Quantum Gases, Metallic Hydrogen and Excitonic Systems201 Chapter 14 (2024) p. 289
  5. Ilenkov R Ya, Prudnikov O N et al Bull. Russ. Acad. Sci. Phys. 88 1034 (2024)
  6. Vincent A, De Silva T N Phys. Rev. A 110 (3) (2024)
  7. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsConclusions. Some Additional Problems201 Chapter 17 (2024) p. 345
  8. Kagan M Yu, Aksenov S V et al Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 117 754 (2023)
  9. Ilenkov R Ya, Prudnikov O N et al J. Exp. Theor. Phys. 137 229 (2023)
  10. Il’enkov R Ya, Prudnikov O N et al Žurnal èksperimentalʹnoj I Teoretičeskoj Fiziki 164 262 (2023)
  11. Kagan M Yu, Aksenov S V et al Jetp Lett. 117 755 (2023)
  12. Vinogradov V A, Karpov K A et al Quantum Electron. 52 528 (2022)
  13. Shi Yu-R, Zhang W, Sá de Melo C A R EPL 139 36004 (2022)
  14. Il’enkov R Ya, Kirpichnikova A A, Prudnikov O N Quantum Electron. 52 137 (2022)
  15. Val’kov V V, Shustin M S et al Phys.-Usp. 65 2 (2022)
  16. Davydov V N Philosophical Magazine 101 2377 (2021)
  17. Kuznetsov E A, Kagan M Yu J. Exp. Theor. Phys. 132 704 (2021)
  18. Klimin S N, Tempere J, Kurkjian H Phys. Rev. A 103 (4) (2021)
  19. Tomilin V A, Il’ichev L V Jetp Lett. 113 207 (2021)
  20. Glazov M M, Suris R A Phys.-Usp. 63 1051 (2021)
  21. Vinogradov V A, Karpov K A et al J. Surf. Investig. 15 1024 (2021)
  22. Bruch L W Phys. Chem. Chem. Phys. 23 7837 (2021)
  23. Vinogradov V A, Karpov K A, Turlapov A V Quantum Electron. 51 490 (2021)
  24. Eroshenko Yu N Phys.-Usp. 64 321 (2021)
  25. Kuznetsov E A, Kagan M Yu, Turlapov A V Phys. Rev. A 101 (4) (2020)
  26. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 190 762 (2020) [Eroshenko Yu N Phys.-Usp. 63 730 (2020)]
  27. Isaev T A Uspekhi Fizicheskikh Nauk 190 313 (2020) [Isaev T A Phys.-Usp. 63 289 (2020)]
  28. Vinogradov V A, Karpov K A et al Quantum Electron. 50 520 (2020)
  29. Afanasiev A E, Mashko A M et al Quantum Electron. 50 206 (2020)
  30. Nemirovskii S K Quantum Electron. 50 556 (2020)
  31. Wu Ch-H Physica B: Condensed Matter 586 412127 (2020)
  32. Glazov M M, Suris R A Uspekhi Fizicheskikh Nauk 190 (11) (2020)
  33. Kuznetsov E A, Kagan M Yu Theor Math Phys 202 399 (2020)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions