Issues

 / 

2018

 / 

September

  

Methodological notes


An operator derivation of the quasiclassical Green's function

,
Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation

The quasiclassical Green's function for the Dirac equation for an arbitrary localized potential is consistently derived using the Fock—Schwinger proper time method. The method essentially consists of exponentially parametrizing the propagator and disentangling the operator expressions. It allows calculating both the main quasiclassical contribution to and the first quasiclassical correction for the Green's function.

Fulltext pdf (508 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.09.038208
Keywords: proper time method, operator technique, Green's function, quasiclassical approximation
PACS: 12.20.−m, 12.20.Ds (all)
DOI: 10.3367/UFNe.2017.09.038208
URL: https://ufn.ru/en/articles/2018/9/d/
000452480000004
2-s2.0-85058469849
2018PhyU...61..896K
Citation: Krachkov P A, Mil’shtein A I "An operator derivation of the quasiclassical Green's function" Phys. Usp. 61 896–899 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 4th, July 2017, 27th, September 2017

Оригинал: Крачков П А, Мильштейн А И «Вывод квазиклассической функции Грина с помощью операторного метода» УФН 188 992–996 (2018); DOI: 10.3367/UFNr.2017.09.038208

References (13) Similar articles (11) ↓

  1. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent mediaPhys. Usp. 60 935–947 (2017)
  2. V.I. Ritus “Finite value of the bare charge and the relation of the fine structure constant ratio for physical and bare charges to zero-point oscillations of the electromagnetic field in a vacuumPhys. Usp. 65 468–486 (2022)
  3. V.I. Ritus “Duality of two-dimensional field theory and four-dimensional electrodynamics leading to finite value of the bare chargePhys. Usp. 56 565–589 (2013)
  4. L.A. Rivlin “Photons in a waveguide (some thought experiments)Phys. Usp. 40 291–303 (1997)
  5. B.P. Kosyakov “Radiation in electrodynamics and in Yang-Mills theorySov. Phys. Usp. 35 (2) 135–142 (1992)
  6. V.S. Krivitskii, V.N. Tsytovich “Average radiation-reaction force in quantum electrodynamicsSov. Phys. Usp. 34 (3) 250–258 (1991)
  7. L.V. Prokhorov “Quantization of the electromagnetic fieldSov. Phys. Usp. 31 151–162 (1988)
  8. V.L. Ginzburg “The nature of spontaneous radiationSov. Phys. Usp. 26 713–719 (1983)
  9. S.E. Kuratov, D.S. Shidlovski et alTwo scales of quantum effects in a mesoscopic system of degenerate electronsPhys. Usp. 64 836–851 (2021)
  10. V.S. Popov “Feynman disentangling оf noncommuting operators and group representation theoryPhys. Usp. 50 1217–1238 (2007)
  11. V.I. Tatarskii “Example of the description of dissipative processes in terms of reversible dynamic equations and some comments on the fluctuation-dissipation theoremSov. Phys. Usp. 30 134–152 (1987)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions