Issues

 / 

2018

 / 

September

  

Methodological notes


An operator derivation of the quasiclassical Green's function

,
Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation

The quasiclassical Green's function for the Dirac equation for an arbitrary localized potential is consistently derived using the Fock—Schwinger proper time method. The method essentially consists of exponentially parametrizing the propagator and disentangling the operator expressions. It allows calculating both the main quasiclassical contribution to and the first quasiclassical correction for the Green's function.

Fulltext pdf (508 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.09.038208
Keywords: proper time method, operator technique, Green's function, quasiclassical approximation
PACS: 12.20.−m, 12.20.Ds (all)
DOI: 10.3367/UFNe.2017.09.038208
URL: https://ufn.ru/en/articles/2018/9/d/
000452480000004
2-s2.0-85058469849
2018PhyU...61..896K
Citation: Krachkov P A, Mil’shtein A I "An operator derivation of the quasiclassical Green's function" Phys. Usp. 61 896–899 (2018)
BibTexBibNote ® (generic) BibNote ® (RIS)MedlineRefWorks
TY JOUR
TI An operator derivation of the quasiclassical Green's function
AU Krachkov, P. A.
AU Mil’shtein, A. I.
PB Physics-Uspekhi
PY 2018
JO Physics-Uspekhi
JF Physics-Uspekhi
JA Phys. Usp.
VL 61
IS 9
SP 896-899
UR https://ufn.ru/en/articles/2018/9/d/
ER https://doi.org/10.3367/UFNe.2017.09.038208

Received: 4th, July 2017, 27th, September 2017

Оригинал: Крачков П А, Мильштейн А И «Вывод квазиклассической функции Грина с помощью операторного метода» УФН 188 992–996 (2018); DOI: 10.3367/UFNr.2017.09.038208

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions