Issues

 / 

2018

 / 

September

  

Methodological notes


An operator derivation of the quasiclassical Green's function

,
Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, prosp. akad. Lavrenteva 11, Novosibirsk, 630090, Russian Federation

The quasiclassical Green's function for the Dirac equation for an arbitrary localized potential is consistently derived using the Fock—Schwinger proper time method. The method essentially consists of exponentially parametrizing the propagator and disentangling the operator expressions. It allows calculating both the main quasiclassical contribution to and the first quasiclassical correction for the Green's function.

Fulltext pdf (508 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.09.038208
Keywords: proper time method, operator technique, Green's function, quasiclassical approximation
PACS: 12.20.−m, 12.20.Ds (all)
DOI: 10.3367/UFNe.2017.09.038208
URL: https://ufn.ru/en/articles/2018/9/d/
000452480000004
2-s2.0-85058469849
2018PhyU...61..896K
Citation: Krachkov P A, Mil’shtein A I "An operator derivation of the quasiclassical Green's function" Phys. Usp. 61 896–899 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)Medline RefWorks
RT Journal
T1 An operator derivation of the quasiclassical Green's function
A1 Krachkov,P.A.
A1 Mil’shtein,A.I.
PB Physics-Uspekhi
PY 2018
FD 10 Sep, 2018
JF Physics-Uspekhi
JO Phys. Usp.
VO 61
IS 9
SP 896-899
DO 10.3367/UFNe.2017.09.038208
LK https://ufn.ru/en/articles/2018/9/d/

Received: 4th, July 2017, 27th, September 2017

Оригинал: Крачков П А, Мильштейн А И «Вывод квазиклассической функции Грина с помощью операторного метода» УФН 188 992–996 (2018); DOI: 10.3367/UFNr.2017.09.038208

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions