Issues

 / 

2018

 / 

December

  

Reviews of topical problems


Straintronics: a new trend in micro- and nanoelectronics and material science

 a,  b, c, d,  e,  f
a E.K. Zavoiskii Kazan Physicotechnical Institute, Kazan Scientific Centre of the Russian Academy of Sciences, Sibirskii trakt 10/7, Kazan, 420029, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
f Moscow Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation

The term 'straintronics' refers to a new research direction in condensed matter physics in which strain engineering methods and strain-induced physical effects in solids are used to develop next generation devices for information, sensor and energy-saving technologies. This paper reviews the basic ideas of straintronics, examines its underlying effects, highlights its advantages over conventional electronics and identifies the problems it faces and fundamental constraints it is subject to. Special attention is given to the straintronics of magnetic and magnetoelectric materials as the most promising direction for radically reducing computational energy consumption. Specific examples are presented of how the principles of straintronics are applied practically in information and energy saving technologies as well as in sensor and microwave engineering.

Fulltext pdf (9 MB)
Fulltext is also available at DOI: 10.3367/UFNe.2018.01.038279
Keywords: strain engineering, magnetoelastic interaction, magnetoelectric composites, multiferroics
PACS: 75.80.+q, 75.85.+t (all)
DOI: 10.3367/UFNe.2018.01.038279
URL: https://ufn.ru/en/articles/2018/12/b/
000459955400002
2-s2.0-85062793687
2018PhyU...61.1175B
Citation: Bukharaev A A, Zvezdin A K, Pyatakov A P, Fetisov Yu K "Straintronics: a new trend in micro- and nanoelectronics and material science" Phys. Usp. 61 1175–1212 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, September 2017, revised: 15th, January 2018, 16th, January 2018

Оригинал: Бухараев А А, Звездин А К, Пятаков А П, Фетисов Ю К «Стрейнтроника — новое направление микро- и наноэлектроники и науки о материалах» УФН 188 1288–1330 (2018); DOI: 10.3367/UFNr.2018.01.038279

References (290) Cited by (193) Similar articles (20) ↓

  1. A.P. Pyatakov, A.K. Zvezdin “Magnetoelectric and multiferroic mediaPhys. Usp. 55 557–581 (2012)
  2. I.V. Antonova “Straintronics of 2D inorganic materials for electronic and optical applicationsPhys. Usp. 65 567–596 (2022)
  3. S.A. Nikitov, A.R. Safin et alDielectric magnonics: from gigahertz to terahertzPhys. Usp. 63 945–974 (2020)
  4. V.I. Ozhogin, V.L. Preobrazhenskii “Anharmonicity of mixed modes and giant acoustic nonlinearity of antiferromagneticsSov. Phys. Usp. 31 713–729 (1988)
  5. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistryPhys. Usp. 61 645–691 (2018)
  6. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materialsPhys. Usp. 57 970–989 (2014)
  7. A.A. Pervishko, D.I. Yudin “Microscopic approach to the description of spin torques in two-dimensional Rashba ferromagnets and antiferromagnetsPhys. Usp. 65 215–226 (2022)
  8. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospectsPhys. Usp. 61 1139–1174 (2018)
  9. K.P. Belov, A.K. Zvezdin et alSpin-reorientation transitions in rare-earth magnetsSov. Phys. Usp. 19 574–596 (1976)
  10. G.A. Smolenskii, I.E. Chupis “FerroelectromagnetsSov. Phys. Usp. 25 475–493 (1982)
  11. A.V. Golenishchev-Kutuzov, V.A. Golenishchev-Kutuzov, R.I. Kalimullin “Induced domains and periodic domain structures in electrically and magnetically ordered materialsPhys. Usp. 43 647–662 (2000)
  12. O.Yu. Belyaeva, L.K. Zarembo, S.N. Karpachev “Magnetoacoustics of ferrites and magnetoacoustic resonanceSov. Phys. Usp. 35 (2) 106–122 (1992)
  13. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)Phys. Usp. 62 823–838 (2019)
  14. E.A. Turov, V.G. Shavrov “Broken symmetry and magnetoacoustic effects in ferroand antiferromagneticsSov. Phys. Usp. 26 593–611 (1983)
  15. A.I. Akhiezer, V.G. Bar’yakhtar, M.I. Kaganov “Spin waves in ferromagnets and antiferromagnets. ISov. Phys. Usp. 3 567–592 (1961)
  16. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructuresPhys. Usp. 56 105–122 (2013)
  17. K.V. Larionov, P.B. Sorokin “Investigation of atomically thin films: state of the artPhys. Usp. 64 28–47 (2021)
  18. Yu.V. Gulyaev, S.V. Tarasenko, V.G. Shavrov “Spin wave acoustics of antiferromagnetic structures as magnetoacoustic metamaterialsPhys. Usp. 54 573–604 (2011)
  19. A.V. Eletskii “Mechanical properties of carbon nanostructures and related materialsPhys. Usp. 50 225–261 (2007)
  20. I.S. Lyubutin, A.G. Gavriliuk “Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the artPhys. Usp. 52 989–1017 (2009)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions