Reviews of topical problems

Straintronics: a new trend in micro- and nanoelectronics and material science

 a,  b, c, d,  e,  f
a E.K. Zavoiskii Kazan Physicotechnical Institute, Kazan Scientific Centre ofthe Russian Academy ofSciences, Sibirskii trakt 10/7, Kazan, 420029, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119942, Russian Federation
c Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation
d Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
e Lomonosov Moscow State University, Department of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
f Moscow Technological University, prosp. Vernadskogo 78, Moscow, 119454, Russian Federation

The term 'straintronics' refers to a new research direction in condensed matter physics in which strain engineering methods and strain-induced physical effects in solids are used to develop next generation devices for information, sensor and energy-saving technologies. This paper reviews the basic ideas of straintronics, examines its underlying effects, highlights its advantages over conventional electronics and identifies the problems it faces and fundamental constraints it is subject to. Special attention is given to the straintronics of magnetic and magnetoelectric materials as the most promising direction for radically reducing computational energy consumption. Specific examples are presented of how the principles of straintronics are applied practically in information and energy saving technologies as well as in sensor and microwave engineering.

Fulltext is available at IOP
Keywords: strain engineering, magnetoelastic interaction, magnetoelectric composites, multiferroics
PACS: 75.80.+q, 75.85.+t (all)
DOI: 10.3367/UFNe.2018.01.038279
Citation: Bukharaev A A, Zvezdin A K, Pyatakov A P, Fetisov Yu K "Straintronics: a new trend in micro- and nanoelectronics and material science" Phys. Usp. 61 1175–1212 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 6th, September 2017, revised: 15th, January 2018, 16th, January 2018

:   ,   ,   ,    « — - » 188 1288–1330 (2018); DOI: 10.3367/UFNr.2018.01.038279

References (290) Cited by (99) Similar articles (20) ↓

  1. A.P. Pyatakov, A.K. Zvezdin “Magnetoelectric and multiferroic media55 557–581 (2012)
  2. S.A. Nikitov, A.R. Safin et alDielectric magnonics: from gigahertz to terahertz63 945–974 (2020)
  3. E.F. Sheka, N.A. Popova, V.A. Popova “Physics and chemistry of graphene. Emergentness, magnetism, mechanophysics and mechanochemistry61 645–691 (2018)
  4. V.I. Ozhogin, V.L. Preobrazhenskii “Anharmonicity of mixed modes and giant acoustic nonlinearity of antiferromagnetics31 713–729 (1988)
  5. M.V. Rybin, M.F. Limonov “Resonance effects in photonic crystals and metamaterials (100th anniversary of the Ioffe Institute)62 823–838 (2019)
  6. E.A. Turov, V.G. Shavrov “Broken symmetry and magnetoacoustic effects in ferroand antiferromagnetics26 593–611 (1983)
  7. Yu.V. Gulyaev, S.V. Tarasenko, V.G. Shavrov “Spin wave acoustics of antiferromagnetic structures as magnetoacoustic metamaterials54 573–604 (2011)
  8. I.S. Lyubutin, A.G. Gavriliuk “Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the art52 989–1017 (2009)
  9. V.G. Bar’yakhtar, A.N. Bogdanov, D.A. Yablonskii “The physics of magnetic domains31 810–835 (1988)
  10. Yu.V. Gulyaev, P.E. Zilberman et alSpintronics: exchange switching of ferromagnetic metallic junctions at a low current density52 335–343 (2009)
  11. A.I. Akhiezer, V.G. Bar’yakhtar, M.I. Kaganov “Spin waves in ferromagnets and antiferromagnets. I3 567–592 (1961)
  12. R.B. Morgunov “Spin micromechanics in the physics of plasticity47 125–147 (2004)
  13. A.E. Galashev, O.R. Rakhmanova “Mechanical and thermal stability of graphene and graphene-based materials57 970–989 (2014)
  14. V.I. Karas’, V.I. Sokolenko “Nonequilibrium kinetics of the electron—phonon subsystem can give rise to electric- and magnetic-plasticity effects in crystals in alternating electric and/or magnetic fields61 1051–1071 (2018)
  15. A.V. Eletskii “Carbon nanotube-based electron field emitters53 863–892 (2010)
  16. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  17. V.N. Binhi, A.V. Savin “Effects of weak magnetic fields on biological systems: physical aspects46 259–291 (2003)
  18. A.V. Golenishchev-Kutuzov, V.A. Golenishchev-Kutuzov, R.I. Kalimullin “Induced domains and periodic domain structures in electrically and magnetically ordered materials43 647–662 (2000)
  19. Yu.V. Gulyaev, I.E. Dikshtein, V.G. Shavrov “Magnetoacoustic surface waves in magnetic crystals near spin-reorientation phase transitions40 701–716 (1997)
  20. A.Yu. Potekhin “The physics of neutron stars53 1235–1256 (2010)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions