Issues

 / 

2018

 / 

January

  

On the 100th anniversary of the birth of I.M. Lifshits. Conferences and symposia


Rare-event statistics and modular invariance

 a, b,  c, d
a Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation
b Laboratoire J.-V. Poncelet, Bolshoi Vlasevskii per. 11, Moscow, 119002, Russian Federation
c Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
d Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russian Federation

Simple geometric arguments based on constructing the Euclid orchard are presented that explain the equivalence of various types of distributions that result from rare-event statistics. In particular, the spectral density of the exponentially weighted ensemble of linear polymer chains is examined for its number-theoretic properties. It can be shown that the eigenvalue statistics of the corresponding adjacency matrices in the sparse regime show a peculiar hierarchical structure and are described by the popcorn (Thomae) function discontinuous in the dense set of rational numbers. Moreover, the spectral edge density distribution exhibits Lifshitz tails, reminiscent of 1D Anderson localization. Finally, a continuous approximation for the popcorn function is suggested based on the Dedekind-function, and the hierarchical ultrametric structure of the popcorn-like distributions is demonstrated to be related to hidden SL(2, Z) modular symmetry.

Fulltext pdf (581 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2017.01.038106
Keywords: modular form, popcorn function, Dedekind function, spectrum of sparse matrix, Euclid's orchard, SL(2, Z) modular group, Lifshitz tails, Anderson localization
PACS: 02.30.−f, 02.50.−r, 05.40.−a (all)
DOI: 10.3367/UFNe.2017.01.038106
URL: https://ufn.ru/en/articles/2018/1/h/
000429883000006
2-s2.0-85045749757
2018PhyU...61...99N
Citation: Nechaev S K, Polovnikov K "Rare-event statistics and modular invariance" Phys. Usp. 61 99–104 (2018)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, February 2017, 18th, January 2017

Оригинал: Нечаев С К, Половников К «Статистика редких событий и модулярная инвариантность» УФН 188 106–112 (2018); DOI: 10.3367/UFNr.2017.01.038106

I.M. Lifshits is author of Physics-Uspekhi

References (22) Cited by (8) ↓ Similar articles (10)

  1. Onuchin A A, Chernizova A V et al Sci Rep 13 (1) (2023)
  2. Flack A, Gorsky A, Nechaev S Nuclear Physics B 996 116376 (2023)
  3. Polovnikov K E, Nechaev S K, Grosberg A Y Phys. Rev. Lett. 129 (9) (2022)
  4. Gorsky A, Nechaev S, Valov A J. High Energ. Phys. 2021 (4) (2021)
  5. Delahaye Je-P N° 517 - novembre 80 (2020)
  6. Polovnikov K, Gorsky A et al Sci Rep 10 (1) (2020)
  7. Tverdislov V A, Malyshko E V Uspekhi Fizicheskikh Nauk 189 375 (2019) [Tverdislov V A, Malyshko E V Phys.-Usp. 62 354 (2019)]
  8. Astakhov A M, Nechaev S K, Polovnikov K E Polym. Sci. Ser. C 60 25 (2018)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions