Conferences and symposia

Gravitational waves and core-collapse supernovae

 a, b,  a
a Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation
b National Research Nuclear University ‘MEPhI’, Kashirskoe shosse 31, Moscow, 115409, Russian Federation

A mechanism of formation of gravitational waves in the Universe is considered for the nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust, and a finite entropy spheroid. Numerical simulation results on core-collapse supernova explosion are presented for the neutrino and magneto-rotational models. These results are used to estimate the nondimensional amplitude of the gravitational wave with frequency ν ~ 1300 Hz, radiated during the collapse (calculated by the authors in 2D) of the rotating nucleus of a pre-supernova with a mass of 1.2 M. This estimate agrees well with many other calculations (presented in this paper) which have been done in 2D and 3D settings and which rely on more exact and sophisticated calculations of the gravitational wave amplitude. The formation of the large scale structure of the Universe in the Zel'dovich pancake model involves the radiation of very long-wavelength gravitational waves. The average amplitude of these waves is calculated from the simulation, in the uniform spheroid approximation, of the nonspherical collapse of noncollisional dust matter, which imitates dark matter. It is noted that the gravitational wave radiated during a core-collapse supernova explosion in our Galaxy is of sufficient amplitude to be detected by existing gravitational wave telescopes.

Fulltext is available at IOP
Keywords: gravitational waves, core-collapse supernovae, dark matter collapse
PACS: 04.80.Nn, 95.85.Sz, 97.60.Bw, 97.60.Lf (all)
DOI: 10.3367/UFNe.2016.11.038112
Citation: Bisnovatyi-Kogan G S, Moiseenko S G "Gravitational waves and core-collapse supernovae" Phys. Usp. 60 843–850 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 31st, March 2017, 2nd, November 2016

Оригинал: Бисноватый-Коган Г С, Моисеенко С Г «Гравитационные волны и сверхновые с коллапсирующим ядром» УФН 187 906–914 (2017); DOI: 10.3367/UFNr.2016.11.038112

References (79) Cited by (5) Similar articles (20) ↓

  1. V.I. Pustovoit “On the direct detection of gravitational waves59 1034–1051 (2016)
  2. V.N. Rudenko “Gravitational-wave experiment in Russia60 830–842 (2017)
  3. A.M. Cherepashchuk “Discovery of gravitational waves: a new chapter in black hole studies59 910–917 (2016)
  4. V.M. Lipunov “Astrophysical sense of the discovery of gravitational waves59 918–928 (2016)
  5. A.M. Cherepashchuk “Observing stellar mass and supermassive black holes59 702–712 (2016)
  6. K.A. Postnov, A.G. Kuranov, N.A. Mitichkin “Spins of black holes in coalescing compact binaries62 1153–1161 (2019)
  7. N.V. Ardelyan, G.S. Bisnovatyi-Kogan, S.G. Moiseenko “Explosion mechanisms of supernovae: the magnetorotational model40 1076–1079 (1997)
  8. D.H. Reitze “The first detections of gravitational waves emitted from binary black hole mergers60 823–829 (2017)
  9. V.B. Braginsky, I.A. Bilenko et alBackground to the discovery of gravitational waves59 879–885 (2016)
  10. G.S. Bisnovatyi-Kogan “Gravitational collapse, neutrino radiation, and supernova light curves31 776–777 (1988)
  11. S.P. Vyatchanin “Parametric oscillatory instability in laser gravitational antennas55 302–305 (2012)
  12. V.P. Mineev, M.G. Vavilov et alScientific session of the Division of General Physics and Astronomy of the Russian Academy of Sciences (May 14, 1997)40 1069–1069 (1997)
  13. G. Frossati “A fourth-generation cryogenic gravitational antenna37 1192–1197 (1994)
  14. A.M. Bykov “Astrophysical objects with extreme energy release: observations and theory61 805–818 (2018)
  15. Yu.N. Gnedin “Investigating supermassive black holes: a new method based on the polarimetric observations of active galactic nuclei56 709–714 (2013)
  16. Advances in astronomy (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 February 2013)56 704–737 (2013)
  17. A.M. Cherepashchuk “Optical investigations of X-ray binary systems54 1061–1067 (2011)
  18. Astrophysics and astronomy (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 January 2011)54 1061–1084 (2011)
  19. V.S. Ptuskin “The origin of cosmic rays53 958–961 (2010)
  20. V.N. Lukash “Cosmological model and universe structure formation46 876–876 (2003)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions