Issues

 / 

2017

 / 

June

  

Reviews of topical problems


Fluctuation-electromagnetic interaction under dynamic and thermal nonequilibrium conditions

,
Kabardino-Balkarian State University, ul. Chernyshevskogo 173, Nalchik, 360004, Russian Federation

This systematic review summarizes theoretical developments related to the relativistic and nonrelativistic fluctuation-electromagnetic interaction of bodies of different temperature moving translationally and (or) rotationally relative to one another. The small particle-plate and small particle—vacuum background configurations are considered as the basic ones. A method is presented for calculating the basic characteristics of this interaction, namely, the conservative-dissipative forces and torques, the heating (cooling) rates, and the intensities of the thermal and nonthermal radiation fluxes that arise under "Cherenkov friction" conditions. Experimental results and possible applications are discussed.

Fulltext pdf (800 KB)
Fulltext is also available at DOI: 10.3367/UFNe.2016.12.038006
Keywords: fluctuation-electromagnetic interaction of moving bodies, Casimir friction, quantum friction, thermal and nonthermal radiation under translational-rotational motion of particles in vacuum
PACS: 41.20.−q, 42.50.Wk, 44.40.+a (all)
DOI: 10.3367/UFNe.2016.12.038006
URL: https://ufn.ru/en/articles/2017/6/b/
000409222900002
2-s2.0-85029172070
2017PhyU...60..559D
Citation: Dedkov G V, Kyasov A A "Fluctuation-electromagnetic interaction under dynamic and thermal nonequilibrium conditions" Phys. Usp. 60 559–585 (2017)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 1st, August 2016, revised: 28th, November 2016, 8th, December 2016

Оригинал: Дедков Г В, Кясов А А «Флуктуационно-электромагнитное взаимодействие в условиях динамической и тепловой неравновесности» УФН 187 599–627 (2017); DOI: 10.3367/UFNr.2016.12.038006

References (205) Cited by (26) ↓ Similar articles (20)

  1. Oue D, Ding K, Pendry J B Phys. Rev. A 107 (6) (2023)
  2. Oelschläger M, Hermann S et al JOSS 8 5160 (2023)
  3. Dik A V, Dabagov S B Physics Letters A 487 129133 (2023)
  4. Reiche D, Intravaia F, Busch K 7 (3) (2022)
  5. Dedkov G V Appl. Phys. Lett. 121 231603 (2022)
  6. Dedkov G V Jetp Lett. 116 405 (2022)
  7. Oelschläger M, Reiche D et al Phys. Rev. A 106 (5) (2022)
  8. Brevik I, Shapiro B, Silveirinha M G Int. J. Mod. Phys. A 37 (19) (2022)
  9. Guo X, Milton K A et al Phys. Rev. D 106 (1) (2022)
  10. Dedkov G V Universe 7 106 (2021)
  11. Grachev A I Tech. Phys. Lett. 47 653 (2021)
  12. Dedkov G V Jetp Lett. 114 713 (2021)
  13. Dedkov G Universe 7 427 (2021)
  14. Dedkov G V, Kyasov A A Surface Science 700 121681 (2020)
  15. Reiche D, Intravaia F et al Phys. Rev. A 102 (5) (2020)
  16. Dedkov G V, Kyasov A A Phys. Solid State 62 1479 (2020)
  17. Dedkov G, Kyasov A Mod. Phys. Lett. A 35 2040013 (2020)
  18. Høye J S, Brevik I Phys. Rev. A 99 (4) (2019)
  19. Reiche D, Oelschläger M et al J. Opt. Soc. Am. B 36 C52 (2019)
  20. Dedkov G V, Kyasov A A Tech. Phys. Lett. 44 837 (2018)
  21. Dedkov G V, Kyasov A A Phys. Solid State 60 2349 (2018)
  22. Dedkov G V, Kyasov A A Chinese Journal Of Physics 56 3002 (2018)
  23. Volokitin A I EPL 122 14003 (2018)
  24. Volokitin A I Jetp Lett. 108 147 (2018)
  25. Dedkov G V, Kyasov A A Tech. Phys. 62 1266 (2017)
  26. Shapiro B Phys. Rev. B 96 (7) (2017)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions