Reviews of topical problems

Attosecond electromagnetic pulses: generation, measurement, and application. Generation of high-order harmonics of intense laser field for attosecond pulse production

 a,  b,  b,  c
a Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119942, Russian Federation
b Lomonosov Moscow State University, Vorobevy Gory, Moscow, 119991, Russian Federation
c Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, ul. Ulyanova 46, Nizhny Novgorod, 603000, Russian Federation

This review presents the current state of research on the generation and use of subfemtosecond(or attosecond, 1 as =1018s) ultraviolet and X-ray pulses. Emission of attosecond pulses is closely related to the generation of high-order harmonics of the laser field: the interaction of intense femtosecond laser pulses with matter causes the generation of high-order harmonics, whose highest orders range from dozens to thousands and which produce attosecond pulses when they are phase-locked in a sufficiently broad spectral region. As two ways of attosecond pulse generation, the interaction of an intense laser field with a gaseous medium and with the edge of a solid state plasma is discussed. The theory of the microscopic high-frequency response of a gaseous medium to an intense low-frequency laser field is presented together with numerical results based on the solution of the time-dependent Schrödinger equation for an atom in the external field. The review describes the methodology for calculating the macroscopic response and analyzes the phase-matching in high-order harmonic generation. For the generation of the coherent XUV radiation at the edge of a dense plasma, different generation scenarios are discussed, a simple model is proposed, and a comparison of model predictions with numerical results from particle-in-cell (PIC) simulations is given.

Fulltext is available at IOP
Keywords: attosecond pulses, high-order harmonic generation, interaction of intense laser fields with matter, phase matching, time-dependent Schrцdinger equation, dense laser plasma, particle-in-cell (PIC) simulations
PACS: 42.65.Ky, 42.65.Re, 52.38.−r (all)
DOI: 10.3367/UFNe.2015.12.037670
Citation: Strelkov V V, Platonenko V T, Sterzhantov A F, Ryabikin M Yu "Attosecond electromagnetic pulses: generation, measurement, and application. Generation of high-order harmonics of intense laser field for attosecond pulse production" Phys. Usp. 59 425–445 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, September 2015, revised: 1st, December 2015, 23rd, December 2015

Оригинал: Стрелков В В, Платоненко В Т, Стержантов А Ф, Рябикин М Ю «Аттосекундные электромагнитные импульсы: генерация, измерение и применение. Генерация высоких гармоник интенсивного лазерного излучения для получения аттосекундных импульсов» УФН 186 449–470 (2016); DOI: 10.3367/UFNr.2015.12.037670

References (237) Cited by (35) Similar articles (20) ↓

  1. R.A. Ganeev “High order harmonics generation in laser surface ablation: current trends56 772–800 (2013)
  2. A.V. Korzhimanov, A.A. Gonoskov et alHorizons of petawatt laser technology54 9–28 (2011)
  3. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectives56 429–464 (2013)
  4. M.Yu. Ryabikin, M.Yu. Emelin, V.V. Strelkov “Attosecond electromagnetic pulses: generation, measurement, and application. Attosecond metrology and spectroscopy”, accepted
  5. S.V. Chekalin, V.P. Kandidov “From self-focusing light beams to femtosecond laser pulse filamentation56 123–140 (2013)
  6. A.M. Zheltikov “Nonlinear optics of microstructure fibers47 69–98 (2004)
  7. P.G. Kryukov, V.S. Letokhov “Propagation of a Light pulse in a Resonantly amplifying (absorbing) medium12 641–672 (1970)
  8. B.M. Karnakov, V.D. Mur et alCurrent progress in developing the nonlinear ionization theory of atoms and ions58 3–32 (2015)
  9. A.M. Zheltikov “The Raman effect in femto- and attosecond physics54 29–51 (2011)
  10. A.M. Zheltikov “Ultrashort light pulses in hollow waveguides45 687–718 (2002)
  11. S.V. Bulanov, Ja.J. Wilkens et alLaser ion acceleration for hadron therapy57 1149–1179 (2014)
  12. V.S. Belyaev, V.P. Krainov et alGeneration of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets51 793–814 (2008)
  13. I.N. Kosarev “Kinetic theory of plasmas and gases. Interaction of high-intensity laser pulses with plasmas49 1239–1252 (2006)
  14. I.Yu. Skobelev, A.Ya. Faenov et alSpectra of hollow ions in an ultradense laser plasma55 47–71 (2012)
  15. G.V. Fetisov “X-ray diffraction methods for structural diagnostics of materials: progress and achievements63 2–32 (2020)
  16. A.M. Zheltikov “Let there be white light: supercontinuum generation by ultrashort laser pulses49 605–628 (2006)
  17. B.M. Bolotovskii, V.L. Ginzburg “The Vavilov-Cerenkov Effect and the Doppler Effect in the Motion of Sources with Superluminal Velocity in Vacuum15 184–192 (1972)
  18. A.A. Ivanov, M.V. Alfimov, A.M. Zheltikov “Femtosecond pulses in nanophotonics47 687–704 (2004)
  19. G.N. Makarov “The spectroscopy of clusters by intense pulses of VUV radiation from free electron lasers52 461–486 (2009)
  20. A.M. Zheltikov “Isolated waveguide modes of high-intensity light fields47 1205–1220 (2004)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions