Issues

 / 

2016

 / 

February

  

Methodological notes


Energy—momentum tensor of the electromagnetic field in dispersive media

,
Peter the Great Saint-Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation

The relation is considered between the energy—momentum tensor of the electromagnetic field and the group velocity of quasi-monochromatic waves in a nonabsorbing, isotropic, temporally and spatially dispersive dielectric. It is shown that, in the absence of external charges and currents in the dielectric, when the Abraham momentum density is used, there is no need to introduce the Abraham force applied to matter for providing the fulfillment of the law of conservation of momentum. The energy—momentum tensor proves to be symmetric and the Maxwell stress tensor is expressed either in terms of the momentum density vector and group velocity or in terms of the energy density and group velocity. The stress tensor and energy density strongly depend on the frequency and wave vector derivatives from functions describing the electromagnetic properties of the medium (permittivity and magnetic permittivity). The results are applicable both for ordinary and left-handed media and are compared with the data obtained by other authors. The pressure produced by waves on the interface of two media is calculated. It is shown that in ordinary and left-handed media, either the light pressure or light attraction can appear depending on the parameters of media. The striction effect is taken into account for liquid dielectrics.

Fulltext is available at IOP
Keywords: energy--momentum tensor, dispersive media, group velocity, light pressure, striction effect
PACS: 03.50.De, 41.20.−q, 77.22.−d (all)
DOI: 10.3367/UFNe.0186.201602c.0146
URL: https://ufn.ru/en/articles/2016/2/d/
Citation: Toptygin I N, Levina K "Energy—momentum tensor of the electromagnetic field in dispersive media" Phys. Usp. 59 141–152 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, February 2015, revised: 4th, December 2015, 15th, December 2015

Оригинал: Топтыгин И Н, Левина К «Тензор энергии-импульса электромагнитного поля в средах с дисперсией» УФН 186 146–158 (2016); DOI: 10.3367/UFNr.0186.201602c.0146

References (35) Cited by (8) Similar articles (20) ↓

  1. V.G. Veselago “Energy, linear momentum, and mass transfer by an electromagnetic wave in a negative-refraction medium52 649–654 (2009)
  2. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting plate53 595–609 (2010)
  3. I.N. Toptygin “Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media60 935–947 (2017)
  4. V.P. Makarov, A.A. Rukhadze “Force acting on a substance in an electromagnetic field52 937–943 (2009)
  5. Yu.A. Spirichev “On choosing the energy—momentum tensor in electrodynamics and on the Abraham force61 303–306 (2018)
  6. V.L. Ginzburg “The laws of conservation of energy and momentum in emission of electromagnetic waves (photons) in a medium and the energy-momentum tensor in macroscopic electrodynamics16 434–439 (1973)
  7. V.P. Makarov, A.A. Rukhadze “Material equations and Maxwell equations for isotropic media; waves with negative group velocity and negative values of ε (ω) and μ (ω)62 487–495 (2019)
  8. V.L. Ginzburg, V.A. Ugarov “Remarks on forces and the energy-momentum tensor in macroscopic electrodynamics19 94–101 (1976)
  9. V.S. Beskin, A.A. Zheltoukhov “On the anomalous torque applied to a rotating magnetized sphere in a vacuum57 799–806 (2014)
  10. G.N. Gaidukov, A.A. Abramov “An interpretation of the energy conservation law for a point charge moving in a uniform electric field51 163–166 (2008)
  11. V.G. Polevoi, S.M. Rytov “The four-dimensional group velocity21 630–638 (1978)
  12. A.M. Dykhne, A.A. Snarskii, M.I. Zhenirovskii “Stability and chaos in randomly inhomogeneous two-dimensional media and LC circuits47 821–828 (2004)
  13. A.G. Shalashov, E.D. Gospodchikov “Impedance technique for modeling of electromagnetic wave propagation in anisotropic and gyrotropic media54 145–165 (2011)
  14. I.N. Toptygin, G.D. Fleishman “Eigenmode generation by a given current in anisotropic and gyrotropic media51 363–374 (2008)
  15. B.M. Bolotovskii, A.V. Serov “Features of the transition radiation field52 487–493 (2009)
  16. A.P. Vinogradov, A.V. Dorofeenko, S. Zouhdi “On the problem of the effective parameters of metamaterials51 485–492 (2008)
  17. I.Ya. Brusin “A topological approach to the determination of macroscopic field vectors30 60–63 (1987)
  18. V.V. Shevchenko “Localization of a stationary electromagnetic field by a planar boundary of a metamaterial54 1131–1142 (2011)
  19. V.B. Morozov “On the question of the electromagnetic momentum of a charged body54 371–374 (2011)
  20. N.A. Vinokurov “Analytical mechanics and field theory: derivation of equations from energy conservation57 593–596 (2014)

The list is formed automatically.

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions