Issues

 / 

2016

 / 

February

  

Methodological notes


Energy—momentum tensor of the electromagnetic field in dispersive media

,
Peter the Great Saint-Petersburg Polytechnic University, ul. Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation

The relation is considered between the energy—momentum tensor of the electromagnetic field and the group velocity of quasi-monochromatic waves in a nonabsorbing, isotropic, temporally and spatially dispersive dielectric. It is shown that, in the absence of external charges and currents in the dielectric, when the Abraham momentum density is used, there is no need to introduce the Abraham force applied to matter for providing the fulfillment of the law of conservation of momentum. The energy—momentum tensor proves to be symmetric and the Maxwell stress tensor is expressed either in terms of the momentum density vector and group velocity or in terms of the energy density and group velocity. The stress tensor and energy density strongly depend on the frequency and wave vector derivatives from functions describing the electromagnetic properties of the medium (permittivity and magnetic permittivity). The results are applicable both for ordinary and left-handed media and are compared with the data obtained by other authors. The pressure produced by waves on the interface of two media is calculated. It is shown that in ordinary and left-handed media, either the light pressure or light attraction can appear depending on the parameters of media. The striction effect is taken into account for liquid dielectrics.

Fulltext is available at IOP
Keywords: energy--momentum tensor, dispersive media, group velocity, light pressure, striction effect
PACS: 03.50.De, 41.20.−q, 77.22.−d (all)
DOI: 10.3367/UFNe.0186.201602c.0146
URL: https://ufn.ru/en/articles/2016/2/d/
Citation: Toptygin I N, Levina K "Energy—momentum tensor of the electromagnetic field in dispersive media" Phys. Usp. 59 141–152 (2016)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 28th, February 2015, revised: 4th, December 2015, 15th, December 2015

Оригинал: Топтыгин И Н, Левина К «Тензор энергии-импульса электромагнитного поля в средах с дисперсией» УФН 186 146–158 (2016); DOI: 10.3367/UFNr.0186.201602c.0146

References (35) ↓ Cited by (8) Similar articles (20)

  1. Landau L D, Lifshits E M Elektrodinamika Sploshnykh Sred (M.: Nauka, 1982); Per. na angl. yaz., Landau L D, Lifshitz E M Electrodynamics Of Continuous Media (Oxford: Pergamon Press, 1984)
  2. Landau L D, Lifshits E M Teoriya Polya (M.: Nauka, 1973); Per. na angl. yaz., Landau L D, Lifshitz E M The Classical Theory Of Fields (Oxford: Butterworth-Heinemann, 2000)
  3. Tamm I E Osnovy Teorii Elektrichestva (M.: Nauka, 1976); Per. na angl. yaz., Tamm I E Fundamentals Of The Theory Of Electricity (Moscow: Mir Publ., 1979)
  4. Ginzburg V L Teoreticheskaya Fizika i Astrofizika. Dopolnitel’nye Glavy 3-e izd. (M.: Nauka, 1987); Per. na angl. yaz., Ginzburg V L Applications Of Electrodynamics In Theoretical Physics And Astrophysics 2nd ed. (New York: Gordon and Breach Sci. Publ., 1989)
  5. Skobel’tsyn D V Usp. Fiz. Nauk 110 253 (1973); Skobel’tsyn D V Sov. Phys. Usp. 16 381 (1973)
  6. Ginzburg V L Usp. Fiz. Nauk 110 309 (1973); Ginzburg V L Sov. Phys. Usp. 16 434 (1973)
  7. Bolotovskii B M, Stolyarov S N Usp. Fiz. Nauk 114 569 (1974); Bolotovskii B M, Stolyarov S N Sov. Phys. Usp. 18 875 (1975)
  8. Minkowski H "Die Grundlagen für die elektromagnetischen Vorgënge in bewegten Körpern" Nachr. König. Ges. Wiss. Göttingen, Math.-Phys. Kl. 53 (1908); Per. na russk. yaz., Minkovskii G Einshteinovskii Sbornik 1978 - 1979 (Pod red. V L Ginzburga) (M.: Nauka, 1983) p. 5
  9. Minkowski H "Eine Ableitung der Grundgleichungen für die elektromagnetishen Forgänge in bewegten Körpern fom Standpunkt der Elektronentheorie" Math. Ann. 68 526 (1902); Per. na russk. yaz., Minkovskii G Einshteinovskii Sbornik 1978 - 1979 (Pod red. V L Ginzburga) (M.: Nauka, 1983) p. 64
  10. Abraham M Rend. Circ. Mat. Palermo 28 1 (1909); Abraham M Rend. Circ. Mat. Palermo 31 527 (1910)
  11. Pauli W Relativitätstheorie (Encyklopädie Der Mathematischen Wissenschaften, Bd. V, Tl. 2, Heft IV) (Leipzig: Teubner, 1921); Per. na russk. yaz., Pauli V Teoriya Otnositel’nosti (M.: Nauka, 1983)
  12. Ginzburg V L, Ugarov V A Usp. Fiz. Nauk 118 175 (1976); Ginzburg V L, Ugarov V A Sov. Phys. Usp. 19 94 (1976)
  13. Ugarov V A Spetsial’naya Teoriya Otnositel’nosti (M.: Nauka, 1977)
  14. Philbin T G Phys. Rev. A 83 013823 (2011)
  15. Zyablovskii A A i dr. Usp. Fiz. Nauk 184 1177 (2014); Zyablovsky A A et al. Phys. Usp. 57 1063 (2014)
  16. Pitaevskii L P Zh. Eksp. Teor. Fiz. 39 1450 (1960); Pitaevskii L P Sov. Phys. JETP 12 1008 (1961)
  17. Makarov V P, Rukhadze A A Usp. Fiz. Nauk 181 1357 (2011); Makarov V P, Rukhadze A A Phys. Usp. 54 1285 (2011)
  18. Polevoi V G, Rytov S M Usp. Fiz. Nauk 125 549 (1978); Polevoi V G, Rytov S M Sov. Phys. Usp. 21 630 (1978)
  19. Agranovich V M, Gartshtein Yu N Usp. Fiz. Nauk 176 1051 (2006); Agranovich V M, Gartstein Yu N Phys. Usp. 49 1029 (2006)
  20. Pamyatnykh E A, Turov E A Osnovy Elektrodinamiki Material’nykh Sred v Peremennykh i Neodnorodnykh Polyakh (M.: Fizmatlit, 2000)
  21. Toptygin I N Sovremennaya Elektrodinamika Ch. 2 Teoriya Elektromagnitnykh Yavlenii v Veshchestve (M. -- Izhevsk: Inst. komp’yut. issled., RKhD, 2005); Per. na angl. yaz., Toptygin I N Electromagnetic Phenomena In Matter. Statistical And Quantum Approaches (Weinheim: Wiley-VCH, 2015)
  22. Vinogradov A P Usp. Fiz. Nauk 172 363 (2002); Vinogradov A P Phys. Usp. 45 331 (2002)
  23. Vinogradov A P, Dorofeenko A V, Zukhdi S Usp. Fiz. Nauk 178 511 (2008); Vinogradov A P, Dorofeenko A V, Zouhdi S Phys. Usp. 51 485 (2008)
  24. Toptygin I N Foundations Of Classical And Quantum Electrodynamics (Weinheim: Wiley - VCH, 2014)
  25. Fok V A Teoriya Prostranstva, Vremeni i Tyagoteniya (M.: GITTL, 1955); Per. na angl. yaz., Fok V A The Theory Of Space, Time And Gravitation (New York: Pergamon Press, 1959)
  26. Veselago V G Usp. Fiz. Nauk 179 689 (2009); Veselago V G Phys. Usp. 52 649 (2009)
  27. Lebedev P N Sobranie Sochinenii (M.: Izd-vo AN SSSR, 1963)
  28. Veselago V G Usp. Fiz. Nauk 92 517 (1967); Veselago V G Sov. Phys. Usp. 10 509 (1968)
  29. Veselago V G Usp. Fiz. Nauk 173 790 (2003); Veselago V G Phys. Usp. 46 764 (2003)
  30. Pendry J B Phys. Rev. Lett. 85 3966 (2000)
  31. Bliokh K Yu, Bliokh Yu P Usp. Fiz. Nauk 174 439 (2004); Bliokh K Yu, Bliokh Yu P Phys Usp. 47 393 (2004)
  32. Born M Wolf E Principles Of Optics (Oxford: Pergamon Press, 1969); Per. na russk. yaz., Born M, Vol’f E Osnovy Optiki (M.: Nauka, 1970)
  33. Mandel’shtam L I Lektsii Po Optike, Teorii Otnositel’nosti i Kvantovoi Mekhanike (M.: Nauka, 1972)
  34. Helmholtz H Ann. Physik 249 385 (1881)
  35. Levin M L Usp. Fiz. Nauk 125 565 (1978); Levin M L Sov. Phys. Usp. 21 639 (1978)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions