Reviews of topical problems

Anomalous superconductivity and superfluidity in repulsive fermion systems

 a, b,  c, d,  c
a National Research University Higher School of Economics, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
b Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
c Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Academgorodok 50, str. 38, Krasnoyarsk, 660036, Russian Federation
d Reshetnev Siberian State Aerospace University, prosp. Gazety Krasnoyarskii rabochii 31, Krasnoyarsk, 660014, Russian Federation

In review, we discuss the mechanisms of unconventional superconductivity and superfluidity in 3D and 2D fermionic systems with purely repulsive interaction at low density. We construct phase diagrams of these systems and find the areas of superconducting state in free space, as well as in the lattice in the framework of the Fermi-gas model with hard-core repulsion, Hubbard model, Shubin—Vonsovsky model, and t—J model. We demonstrate that the critical superconducting temperature can be strongly increased in a spin-polarized case or in a two-band situation already at low densities. The proposed theory is based on the Kohn—Luttinger mechanism or its generalizations and explains or predicts anomalous p-, d- and f-wave pairing in various materials, such as high-temperature superconductors, idealized monolayer and bilayer of doped graphene, heavy-fermion systems, layered organic superconductors, superfluid 3He, spin-polarized solutions 3He in 4He, ultracold quantum gases in magnetic traps and in the optical lattices.

Fulltext is available at IOP
Keywords: anomalous superconductivity, Kohn—Luttinger mechanism, superfluidity, repulsive Fermi gas, Hubbard and t—J model, Shubin—Vonsovsky model, graphene monolayer, graphene bilayer
PACS: 67.85.−d, 74.20.−z, 74.20.Mn, 74.20.Rp, 74.25.Dw, 74.78.Fk, 81.05.ue (all)
DOI: 10.3367/UFNe.0185.201508a.0785
Citation: Kagan M Yu, Mitskan V A, Korovushkin M M "Anomalous superconductivity and superfluidity in repulsive fermion systems" Phys. Usp. 58 733–761 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, May 2015, 9th, June 2015

Оригинал: Каган М Ю, Мицкан В А, Коровушкин М М «Аномальная сверхпроводимость и сверхтекучесть в фермионных системах с отталкиванием» УФН 185 785–815 (2015); DOI: 10.3367/UFNr.0185.201508a.0785

References (311) Cited by (16) Similar articles (20) ↓

  1. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  2. V.V. Val’kov, D.M. Dzebisashvili et alSpin-polaron concept in the theory of normal and superconducting states of cuprates64 641–670 (2021)
  3. P.V. Ratnikov, A.P. Silin “Two-dimensional graphene electronics: current status and prospects61 1139–1174 (2018)
  4. Yu.A. Izyumov “Hubbard model of strong correlations38 385–408 (1995)
  5. G.B. Lesovik, I.A. Sadovskyy “Scattering matrix approach to the description of quantum electron transport54 1007–1059 (2011)
  6. P.B. Sorokin, L.A. Chernozatonskii “Graphene-based semiconductor nanostructures56 105–122 (2013)
  7. M.V. Sadovskii “High-temperature superconductivity in iron-based layered compounds51 1201–1227 (2008)
  8. A.S. Mishchenko “Electron — phonon coupling in underdoped high-temperature superconductors52 1193–1212 (2009)
  9. D.N. Zubarev “Double-time Green functions in statistical physics3 320–345 (1960)
  10. K.V. Mitsen, O.M. Ivanenko “Phase diagram of La2-xMxCuO4 as the key to understanding the nature of high-Tc superconductors47 493–510 (2004)
  11. A.L. Ivanovskii “New high-temperature superconductors based on rare-earth and transition metal oxyarsenides and related phases: synthesis, properties, and simulations51 1229–1260 (2008)
  12. I.N. Askerzade “Study of layered superconductors in the theory of an electron — phonon coupling mechanism52 977–988 (2009)
  13. Yu.A. Izyumov “Strongly correlated electrons: the t-J model40 445–476 (1997)
  14. V.P. Mineev “Superconductivity in uranium ferromagnets60 121–148 (2017)
  15. E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii “Generalized dynamical mean-field theory in the physics of strongly correlated systems55 325–355 (2012)
  16. N.I. Kashirina, V.D. Lakhno “Large-radius bipolaron and the polaron-polaron interaction53 431–453 (2010)
  17. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  18. V.F. Gantmakher, V.T. Dolgopolov “Superconductor-insulator quantum phase transition53 1–49 (2010)
  19. V.V. Val’kov, M.S. Shustin et alTopological superconductivity and Majorana states in low-dimensional systems”, accepted
  20. Yu.A. Izyumov “Spin-fluctuation mechanism of high-Tc superconductivity and order-parameter symmetry42 215–243 (1999)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions