Issues

 / 

2015

 / 

August

  

Reviews of topical problems


Anomalous superconductivity and superfluidity in repulsive fermion systems

 a, b,  c, d,  c
a HSE University, ul. Myasnitskaya 20, Moscow, 101000, Russian Federation
b Kapitza Institute of Physical Problems, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 117334, Russian Federation
c Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Academgorodok 50, str. 38, Krasnoyarsk, 660036, Russian Federation
d Reshetnev Siberian State Aerospace University, prosp. Gazety Krasnoyarskii rabochii 31, Krasnoyarsk, 660014, Russian Federation

In review, we discuss the mechanisms of unconventional superconductivity and superfluidity in 3D and 2D fermionic systems with purely repulsive interaction at low density. We construct phase diagrams of these systems and find the areas of superconducting state in free space, as well as in the lattice in the framework of the Fermi-gas model with hard-core repulsion, Hubbard model, Shubin—Vonsovsky model, and t—J model. We demonstrate that the critical superconducting temperature can be strongly increased in a spin-polarized case or in a two-band situation already at low densities. The proposed theory is based on the Kohn—Luttinger mechanism or its generalizations and explains or predicts anomalous p-, d- and f-wave pairing in various materials, such as high-temperature superconductors, idealized monolayer and bilayer of doped graphene, heavy-fermion systems, layered organic superconductors, superfluid 3He, spin-polarized solutions 3He in 4He, ultracold quantum gases in magnetic traps and in the optical lattices.

Fulltext pdf (1.2 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201508a.0785
Keywords: anomalous superconductivity, Kohn—Luttinger mechanism, superfluidity, repulsive Fermi gas, Hubbard and t—J model, Shubin—Vonsovsky model, graphene monolayer, graphene bilayer
PACS: 67.85.−d, 74.20.−z, 74.20.Mn, 74.20.Rp, 74.25.Dw, 74.78.Fk, 81.05.ue (all)
DOI: 10.3367/UFNe.0185.201508a.0785
URL: https://ufn.ru/en/articles/2015/8/a/
000364717300001
2-s2.0-84947767252
2015PhyU...58..733K
Citation: Kagan M Yu, Mitskan V A, Korovushkin M M "Anomalous superconductivity and superfluidity in repulsive fermion systems" Phys. Usp. 58 733–761 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 15th, May 2015, 9th, June 2015

Îðèãèíàë: Êàãàí Ì Þ, Ìèöêàí Â À, Êîðîâóøêèí Ì Ì «Àíîìàëüíàÿ ñâåðõïðîâîäèìîñòü è ñâåðõòåêó÷åñòü â ôåðìèîííûõ ñèñòåìàõ ñ îòòàëêèâàíèåì» ÓÔÍ 185 785–815 (2015); DOI: 10.3367/UFNr.0185.201508a.0785

References (311) Cited by (30) ↓ Similar articles (20)

  1. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsIntroduction. Spontaneously Formed Nanoscale Inhomogenieties in Different Materials201 Chapter 1 (2024) p. 1
  2. Keles A, Li X, Zhao E Phys. Rev. B 109 (5) (2024)
  3. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsElectron Polaron Effect, Anomalous Resistivity, and the Origin of a Heavy Mass in the Two-Band Model with One Narrow Band201 Chapter 10 (2024) p. 203
  4. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsCharge Ordering and Phase Separation201 Chapter 4 (2024) p. 49
  5. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsDisorder Effects and Phase Separation in Lattice Models, 2DEG, and Weyl Semimetals201 Chapter 16 (2024) p. 335
  6. Yu K M, I K K et al Springer Series In Solid-State Sciences Vol. Electronic Phase Separation in Magnetic and Superconducting MaterialsDroplets Formation, BEC and Superconductivity in Quantum Gases, Metallic Hydrogen and Excitonic Systems201 Chapter 14 (2024) p. 289
  7. Zlotnikov A O Phys. Rev. B 107 (14) (2023)
  8. Kagan M Yu, Aksenov S V et al Jetp Lett. 117 755 (2023)
  9. Jahin A, Wang Yu Phys. Rev. B 108 (1) (2023)
  10. Dai H, Ma R et al Phys. Rev. B 107 (24) (2023)
  11. Ghazaryan A, Holder T et al Phys. Rev. B 107 (10) (2023)
  12. You Y-Zh, Vishwanath A Phys. Rev. B 105 (13) (2022)
  13. Val’kov V V, Shustin M S et al Phys.-Usp. 65 2 (2022)
  14. Val’kov V V, Dzebisashvili D M et al Phys.-Usp. 64 641 (2021)
  15. Ghazaryan A, Holder T et al Phys. Rev. Lett. 127 (24) (2021)
  16. Kirchanov V S Russ Phys J 64 491 (2021)
  17. Kagan M Yu, Kugel K I, Rakhmanov A L Physics Reports 916 1 (2021)
  18. Li T, Ingham Ju, Scammell H D Phys. Rev. Research 2 (4) (2020)
  19. Val’kov V V, Mitskan V A et al Jetp Lett. 110 140 (2019)
  20. Sedrakian A, Clark J W Eur. Phys. J. A 55 (9) (2019)
  21. Allami H, Starykh O A, Pesin D A Phys. Rev. B 99 (10) (2019)
  22. Val’kov V V, Dzembisashvili D M et al J. Exp. Theor. Phys. 128 885 (2019)
  23. Kagan M Yu, Bianconi A Condensed Matter 4 51 (2019)
  24. Val’kov V V, Dzebisashvili D M et al J Low Temp Phys 191 408 (2018)
  25. Val’kov V V, Dzebisashvili D M et al J. Exp. Theor. Phys. 125 810 (2017)
  26. Val’kov V V, Zlotnikov A O Jetp Lett. 104 483 (2016)
  27. Val’kov V V, Dzebisashvili D M et al Jetp Lett. 103 385 (2016)
  28. Lake E, Webb C et al Phys. Rev. B 93 (21) (2016)
  29. Kagan M Yu Jetp Lett. 103 728 (2016)
  30. Kagan M Yu, Mitskan V A, Korovushkin M M J Supercond Nov Magn 29 1043 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions