Issues

 / 

2015

 / 

June

  

Reviews of topical problems


Stretching vortex filaments model and the grounds of statistical theory of turbulence

,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Although statistical properties of small-scale velocity perturbations in homogeneous and isotropic hydrodynamic turbulence are well studied experimentally and numerically, no definite theoretical explanation is available yet. The concept of breaking vortices commonly accepted as the primary turbulent mechanism not only fails to account for a number of facts but also is self-contradictory. This review discusses an alternative concept according to which the stretching of vortices rather than their decay is the determining process. The evolution of stretching vortex filaments and their properties are derived directly from the Navier—Stokes equation. The model of stretching vortex filaments explains the power-law behavior of velocity structure functions and the intermittency of their exponents, thus imparting physical meaning to multifractal theory which is based on dimensional considerations. The vortex filaments model is the only theory that explains the observed differences between the scaling exponents of longitudinal and transverse structure functions.

Fulltext pdf (655 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201506b.0593
Keywords: hydrodynamics, turbulence, statistical theory
PACS: 47.10.ad, 47.27.Jv (all)
DOI: 10.3367/UFNe.0185.201506b.0593
URL: https://ufn.ru/en/articles/2015/6/b/
000361014200002
2015PhyU...58..556Z
Citation: Zybin K P, Sirota V A "Stretching vortex filaments model and the grounds of statistical theory of turbulence" Phys. Usp. 58 556–573 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, January 2015, 20th, January 2015

Оригинал: Зыбин К П, Сирота В А «Модель вытягивающихся вихрей и обоснование статистических свойств турбулентности» УФН 185 593–612 (2015); DOI: 10.3367/UFNr.0185.201506b.0593

References (64) Cited by (27) Similar articles (20) ↓

  1. V.P. Budaev, S.P. Savin, L.M. Zelenyi “Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport featuresPhys. Usp. 54 875–918 (2011)
  2. V.P. Lukin “Outer scale of turbulence and its influence on fluctuations of optical wavesPhys. Usp. 64 280–303 (2021)
  3. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmasPhys. Usp. 57 421–452 (2014)
  4. A.N. Kolmogorov “Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbersSov. Phys. Usp. 10 734–746 (1968)
  5. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamicsPhys. Usp. 47 749–788 (2004)
  6. M.I. Rabinovich, M.M. Sushchik “The regular and chaotic dynamics of structures in fluid flowsSov. Phys. Usp. 33 (1) 1–35 (1990)
  7. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transportPhys. Usp. 56 243–260 (2013)
  8. A.V. Gurevich, K.P. Zybin, V.A. Sirota “Small-scale structure of dark matter and microlensingPhys. Usp. 40 869–898 (1997)
  9. V.V. Uchaikin “Fractional phenomenology of cosmic ray anomalous diffusionPhys. Usp. 56 1074–1119 (2013)
  10. D.S. Ponomarev, A.E. Yachmenev et alOptical-to-terahertz switches: state of the art and new opportunities for multispectral imagingPhys. Usp. 67 3–21 (2024)
  11. V.V. Uchaikin “Self-similar anomalous diffusion and Levy-stable lawsPhys. Usp. 46 821–849 (2003)
  12. V.V. Uchaikin, A.D. Erlykin, R.T. Sibatov “Nonlocal (fractional-differential) model of cosmic ray transport in the interstellar mediumPhys. Usp. 66 221–262 (2023)
  13. V.B. Efimov “Acoustic turbulence of second sound waves in superfluid heliumPhys. Usp. 61 929–951 (2018)
  14. S.N. Gurbatov, A.I. Saichev, I.G. Yakushkin “Nonlinear waves and one-dimensional turbulence in nondispersive mediaSov. Phys. Usp. 26 857–876 (1983)
  15. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)Phys. Usp. 36 (11) 1020–1052 (1993)
  16. S.I. Vainshtein, Ya.B. Zel’dovich “Origin of Magnetic Fields in Astrophysics (Turbulent ’Dynamo’ Mechanisms)Sov. Phys. Usp. 15 159–172 (1972)
  17. S.N. Gurbatov, A.I. Saichev, S.F. Shandarin “Large-scale structure of the Universe. The Zeldovich approximation and the adhesion modelPhys. Usp. 55 223–249 (2012)
  18. V.V. Zhuravlev “Analytical models of relativistic accretion disksPhys. Usp. 58 527–555 (2015)
  19. V.E. Zakharov, E.A. Kuznetsov “Hamiltonian formalism for nonlinear wavesPhys. Usp. 40 1087–1116 (1997)
  20. S.A. Molchanov, A.A. Ruzmaikin, D.D. Sokolov “Kinematic dynamo in random flowSov. Phys. Usp. 28 307–327 (1985)

The list is formed automatically.

© 1918–2025 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions