Issues

 / 

2015

 / 

June

  

Reviews of topical problems


Stretching vortex filaments model and the grounds of statistical theory of turbulence

,
Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Although statistical properties of small-scale velocity perturbations in homogeneous and isotropic hydrodynamic turbulence are well studied experimentally and numerically, no definite theoretical explanation is available yet. The concept of breaking vortices commonly accepted as the primary turbulent mechanism not only fails to account for a number of facts but also is self-contradictory. This review discusses an alternative concept according to which the stretching of vortices rather than their decay is the determining process. The evolution of stretching vortex filaments and their properties are derived directly from the Navier—Stokes equation. The model of stretching vortex filaments explains the power-law behavior of velocity structure functions and the intermittency of their exponents, thus imparting physical meaning to multifractal theory which is based on dimensional considerations. The vortex filaments model is the only theory that explains the observed differences between the scaling exponents of longitudinal and transverse structure functions.

Fulltext pdf (655 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0185.201506b.0593
Keywords: hydrodynamics, turbulence, statistical theory
PACS: 47.10.ad, 47.27.Jv (all)
DOI: 10.3367/UFNe.0185.201506b.0593
URL: https://ufn.ru/en/articles/2015/6/b/
000361014200002
2015PhyU...58..556Z
Citation: Zybin K P, Sirota V A "Stretching vortex filaments model and the grounds of statistical theory of turbulence" Phys. Usp. 58 556–573 (2015)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, January 2015, 20th, January 2015

Оригинал: Зыбин К П, Сирота В А «Модель вытягивающихся вихрей и обоснование статистических свойств турбулентности» УФН 185 593–612 (2015); DOI: 10.3367/UFNr.0185.201506b.0593

References (64) Cited by (27) ↓ Similar articles (20)

  1. Vergeles S S Pisʹma V žurnal êksperimentalʹnoj I Teoretičeskoj Fiziki 120 288 (2024)
  2. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 194 903 (2024)
  3. [Eroshenko Yu N Phys. Usp. 67 849 (2024)]
  4. Vergeles S S Jetp Lett. 120 284 (2024)
  5. Udodov V N (1(47)) 10 (2023)
  6. Udodov V N (6(52)) 87 (2023)
  7. Uchaikin V V, Erlykin A D, Sibatov R T Uspekhi Fizicheskikh Nauk 193 233 (2023)
  8. [Uchaikin V V, Erlykin A D, Sibatov R T Phys. Usp. 66 221 (2023)]
  9. Eroshenko Yu N Uspekhi Fizicheskikh Nauk 193 1023 (2023)
  10. [Eroshenko Yu N Phys. Usp. 66 964 (2023)]
  11. Kopiev V F, Chernyshev S A Acoust. Phys. 68 602 (2022)
  12. Agafontsev D S, Kuznetsov E A et al Phys.-Usp. 65 189 (2022)
  13. Yudin M A, Kopiev V F et al Dokl. Phys. 67 282 (2022)
  14. Gong Ya, Liu Sh et al A&A 663 A82 (2022)
  15. Zybin K P, Il’yn A S et al Dokl. Phys. 67 278 (2022)
  16. Chefranov S G, Chefranov A S 33 (7) (2021)
  17. Kondaurova L P, Andryushchenko V A 47 740 (2021)
  18. Kopyev A V, Il’yn A S et al Phys. Rev. E 101 (6) (2020)
  19. Chefranov S G, Chefranov A S Communications In Nonlinear Science And Numerical Simulation 83 105118 (2020)
  20. Chefranov S G, Chefranov A S ERCOFTAC Series Vol. Turbulent Cascades IIThe Exact Solution to the 3D Vortex Compressible Euler Equation and the Clay Millennium Problem Generalization26 Chapter 9 (2019) p. 71
  21. Chefranov S G, Chefranov A S Phys. Scr. 94 054001 (2019)
  22. Agafontsev D S, Kuznetsov E A, Mailybaev A A Jetp Lett. 110 121 (2019)
  23. Kopyev A V Phys. Rev. Fluids 3 (2) (2018)
  24. Zybin K P, Kopyev A V Fluid Dyn 53 485 (2018)
  25. Kirillov P L At Energy 122 156 (2017)
  26. Il’yn A S, Sirota V A, Zybin K P J Stat Phys 166 24 (2017)
  27. Il’yn A S, Sirota V A, Zybin K P J Stat Phys 163 765 (2016)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions