Reviews of topical problems

Dendrite growth under forced convection: analysis methods and experimental tests

 a,  b, c
a Department of Mathematical Physics, Ural Federal University named after the First President of Russia B. N. Yeltsin, prosp. Lenina 51, Ekaterinburg, 620083, Russian Federation
b Friedrich-Schiller-Universität-Jena, Physikalisch-Astronomische Fakultät, Löbdergraben Strasse 32, Jena, 07743, Germany
c Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln, Germany

An analysis is given of the nonisothermal growth of a dendrite under forced fluid flow in a binary system. The theoretical model used employs a free moving crystal—liquid interface and makes use of the Oseen approximation for the equation of motion of the liquid. A criterion for the stable growth of a two-dimensional and a three-dimensional parabolic dendrite is derived under the assumption of an anisotropic surface tension at the crystal—liquid interface, which generalizes the previous known results for the stable growth of a dendrite with convection in a one-component liquid and for the growth of a dendrite in a two-component system at rest. The criterion obtained within the Oseen hydrodynamic approximation is extended to arbitrary Peclet numbers and dendrite growth with convection in a nonisothermal multicomponent system. Model predictions are compared with experimental data on crystal growth kinetics in droplets processed in electromagnetic and electrostatic levitation facilities. Theoretical and simulation methods currently being developed are applied to crystallization processes under Earth and reduced gravity conditions.

Fulltext pdf (827 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201408b.0833
PACS: 05.70.Fh, 05.70.Ln, 68.70.+w (all)
DOI: 10.3367/UFNe.0184.201408b.0833
Citation: Alexandrov D V, Galenko P K "Dendrite growth under forced convection: analysis methods and experimental tests" Phys. Usp. 57 771–786 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, December 2013, revised: 18th, March 2014, 26th, March 2014

Оригинал: Александров Д В, Галенко П К «Дендритный рост с вынужденной конвекцией: методы анализа и экспериментальные тесты» УФН 184 833–850 (2014); DOI: 10.3367/UFNr.0184.201408b.0833

References (94) Cited by (97) Similar articles (20) ↓

  1. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systems38 1061–1097 (1995)
  2. A.P. Gerasev “Nonequilibrium thermodynamics of autowave processes in a catalyst bed47 991–1016 (2004)
  3. E.M. Nadgornyi, Yu.A. Osip’yan et alFilamentary crystals with almost the theoretical strength of perfect crystals2 282–304 (1959)
  4. B.M. Smirnov “Fractal clusters29 481–505 (1986)
  5. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walks37 527–561 (1994)
  6. L.M. Martyushev “Мaximum entropy production principle: history and current status64 558–583 (2021)
  7. A.M. Glezer, R.V. Sundeev et alPhysics of severe plastic deformation66 32–58 (2023)
  8. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  9. V.M. Zhdanov, V.I. Roldugin “Non-equilibrium thermodynamics and kinetic theory of rarefied gases41 349–378 (1998)
  10. Yu.E. Lozovik, A.M. Popov “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones40 717–737 (1997)
  11. S.L. Sobolev “Transport processes and traveling waves in systems with local nonequilibrium34 (3) 217–229 (1991)
  12. Yu.L. Klimontovich “Problems in the statistical theory of open systems: Criteria for the relative degree of order in self-organization processes32 416–433 (1989)
  13. M.A. Mikulinskii “Effect of small perturbations on the behavior of thermodynamics quantities near a second-order phase transition point16 361–380 (1973)
  14. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layer55 1008–1034 (2012)
  15. G.A. Martynov “The problem of phase transitions in statistical mechanics42 517–543 (1999)
  16. G.R. Ivanitskii “The self-organizing dynamic stability of far-from-equilibrium biological systems60 705–730 (2017)
  17. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  18. A.I. Olemskoi “Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymers44 479–513 (2001)
  19. V.K. Vanag “Study of spatially extended dynamical systems using probabilistic cellular automata42 413–434 (1999)
  20. A.I. Olemskoi “Theory of stochastic systems with singular multiplicative noise41 269–301 (1998)

The list is formed automatically.

© 1918–2023 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions