Issues

 / 

2014

 / 

August

  

Reviews of topical problems


Dendrite growth under forced convection: analysis methods and experimental tests

 a,  b, c
a Department of Mathematical Physics, Ural Federal University named after the First President of Russia B. N. Yeltsin, prosp. Lenina 51, Ekaterinburg, 620083, Russian Federation
b Friedrich-Schiller-Universität-Jena, Physikalisch-Astronomische Fakultät, Löbdergraben Strasse 32, Jena, 07743, Germany
c Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln, Germany

An analysis is given of the nonisothermal growth of a dendrite under forced fluid flow in a binary system. The theoretical model used employs a free moving crystal—liquid interface and makes use of the Oseen approximation for the equation of motion of the liquid. A criterion for the stable growth of a two-dimensional and a three-dimensional parabolic dendrite is derived under the assumption of an anisotropic surface tension at the crystal—liquid interface, which generalizes the previous known results for the stable growth of a dendrite with convection in a one-component liquid and for the growth of a dendrite in a two-component system at rest. The criterion obtained within the Oseen hydrodynamic approximation is extended to arbitrary Peclet numbers and dendrite growth with convection in a nonisothermal multicomponent system. Model predictions are compared with experimental data on crystal growth kinetics in droplets processed in electromagnetic and electrostatic levitation facilities. Theoretical and simulation methods currently being developed are applied to crystallization processes under Earth and reduced gravity conditions.

Fulltext pdf (827 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201408b.0833
PACS: 05.70.Fh, 05.70.Ln, 68.70.+w (all)
DOI: 10.3367/UFNe.0184.201408b.0833
URL: https://ufn.ru/en/articles/2014/8/b/
000345112400002
2-s2.0-84911489822
2014PhyU...57..771A
Citation: Alexandrov D V, Galenko P K "Dendrite growth under forced convection: analysis methods and experimental tests" Phys. Usp. 57 771–786 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 7th, December 2013, revised: 18th, March 2014, 26th, March 2014

Оригинал: Александров Д В, Галенко П К «Дендритный рост с вынужденной конвекцией: методы анализа и экспериментальные тесты» УФН 184 833–850 (2014); DOI: 10.3367/UFNr.0184.201408b.0833

References (94) Cited by (103) Similar articles (20) ↓

  1. B.M. Smirnov “Fractal clustersSov. Phys. Usp. 29 481–505 (1986)
  2. Yu.E. Lozovik, A.M. Popov “Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and conesPhys. Usp. 40 717–737 (1997)
  3. A.I. Olemskoi, I.V. Koplyk “The theory of spatiotemporal evolution of nonequilibrium thermodynamic systemsPhys. Usp. 38 1061–1097 (1995)
  4. A.P. Gerasev “Nonequilibrium thermodynamics of autowave processes in a catalyst bedPhys. Usp. 47 991–1016 (2004)
  5. E.M. Nadgornyi, Yu.A. Osip’yan et alFilamentary crystals with almost the theoretical strength of perfect crystalsSov. Phys. Usp. 2 282–304 (1959)
  6. V.I. Alkhimov “Excluded volume effect in statistics of self-avoiding walksPhys. Usp. 37 527–561 (1994)
  7. L.M. Martyushev “Мaximum entropy production principle: history and current statusPhys. Usp. 64 558–583 (2021)
  8. A.M. Glezer, R.V. Sundeev et alPhysics of severe plastic deformationPhys. Usp. 66 32–58 (2023)
  9. B.M. Smirnov “Scaling method in atomic and molecular physicsPhys. Usp. 44 1229–1253 (2001)
  10. V.M. Zhdanov, V.I. Roldugin “Non-equilibrium thermodynamics and kinetic theory of rarefied gasesPhys. Usp. 41 349–378 (1998)
  11. S.L. Sobolev “Transport processes and traveling waves in systems with local nonequilibriumSov. Phys. Usp. 34 (3) 217–229 (1991)
  12. Yu.L. Klimontovich “Problems in the statistical theory of open systems: Criteria for the relative degree of order in self-organization processesSov. Phys. Usp. 32 416–433 (1989)
  13. M.A. Mikulinskii “Effect of small perturbations on the behavior of thermodynamics quantities near a second-order phase transition pointSov. Phys. Usp. 16 361–380 (1973)
  14. A.V. Khomenko, I.A. Lyashenko “Statistical theory of the boundary friction of atomically flat solid surfaces in the presence of a lubricant layerPhys. Usp. 55 1008–1034 (2012)
  15. G.A. Martynov “The problem of phase transitions in statistical mechanicsPhys. Usp. 42 517–543 (1999)
  16. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional meltingPhys. Usp. 60 857–885 (2017)
  17. G.R. Ivanitskii “The self-organizing dynamic stability of far-from-equilibrium biological systemsPhys. Usp. 60 705–730 (2017)
  18. A.A. Chernov “Growth of copolymer chains and mixed CRYSTALS—TRIAL-AND-ERROR statisticsSov. Phys. Usp. 13 101–128 (1970)
  19. S.V. Demishev “Spin-fluctuation transitionsPhys. Usp. 67 22–43 (2024)
  20. A.I. Olemskoi “Supersymmetric field theory of a nonequilibrium stochastic system as applied to disordered heteropolymersPhys. Usp. 44 479–513 (2001)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions