Reviews of topical problems

Holographic approach to quark—gluon plasma in heavy ion collisions

V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russian Federation

We review recent applications of dual holographic approach to the quark—gluon plasma observed in high energy collisions of relativistic heavy ions. Holography and AdS/CFT duality provide a means to study the properties of strong coupling quantum field theories using higher-dimensional gravity theories. The appearance of quark—gluon plasma in a heavy ion collision can in dual terms be described as the formation of a black hole. To illustrate the major achievements of holographic theory we discuss the calculation of the following quantities: the shear viscosity and other transport coefficients (all calculated by second order hydrodynamic models), the energy dependence of multiplicities, and the anisotropic thermalization and isotropization times. We also compare theoretical predictions with experimental data, including the recent LHC results.

Fulltext is available at IOP
PACS: 04.50.Gh, 11.25.Tq, 12.38.Mh, 24.85.+p (all)
DOI: 10.3367/UFNe.0184.201406a.0569
Citation: Aref’eva I Ya "Holographic approach to quark—gluon plasma in heavy ion collisions" Phys. Usp. 57 527–555 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, May 2013, revised: 5th, July 2013, 2nd, August 2013

Оригинал: Арефьева И Я «Голографическое описание кварк-глюонной плазмы, образующейся при столкновениях тяжёлых ионов» УФН 184 569–598 (2014); DOI: 10.3367/UFNr.0184.201406a.0569

References (302) Cited by (43) Similar articles (20) ↓

  1. I.M. Dremin, A.V. Leonidov “The quark — gluon medium53 1123–1149 (2010)
  2. S. Peigné, A.V. Smilga “Energy losses in relativistic plasmas: QCD versus QED52 659–685 (2009)
  3. I.L. Rozental’, Yu.A. Tarasov “Hydrodynamic theory of multiple process and the physics of the quark-gluon plasma36 (7) 572–586 (1993)
  4. A.V. Leonidov “Dense gluon matter in nuclear collisions48 323–343 (2005)
  5. I.I. Roizen, E.L. Feinberg, O.D. Chernavskaya “Color deconfinement and subhadronic matter: phase states and the role of constituent quarks47 427–446 (2004)
  6. V.A. Rubakov “Large and infinite extra dimensions44 871–893 (2001)
  7. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficients58 252–285 (2015)
  8. A.Y. Potekhin “Atmospheres and radiating surfaces of neutron stars57 735–770 (2014)
  9. M.L. Mangano “QCD and the physics of hadronic collisions53 109–132 (2010)
  10. L.A. Sliv, M.I. Strikman, L.L. Frankfurt “Quantum chromodynamics and the derivation of a microscopic theory of the nucleus28 281–306 (1985)
  11. V.V. Anisovich, M.N. Kobrinskii et alAdditive quark model and multiple production of hadrons27 901–926 (1984)
  12. E.E. Boos, O. Brandt et alThe top quark (20 years after the discovery)58 1133–1158 (2015)
  13. S.V. Bulanov, T.Zh. Esirkepov et alRelativistic mirrors in plasmas — novel results and perspectives56 429–464 (2013)
  14. I.Yu. Skobelev, A.Ya. Faenov et alSpectra of hollow ions in an ultradense laser plasma55 47–71 (2012)
  15. O.G. Bakunin “Reconstruction of streamline topology, and percolation models of turbulent transport56 243–260 (2013)
  16. A.A. Ishchenko, S.A. Aseev et alUltrafast electron diffraction and electron microscopy: present status and future prospects57 633–669 (2014)
  17. B.M. Pontekorvo “Elementary particle physics is expensive: is it necessary?8 617–618 (1966)
  18. A.Yu. Potekhin “The physics of neutron stars53 1235–1256 (2010)
  19. M.Yu. Kagan, A.V. Turlapov “BCS—BEC crossover, collective excitations, and hydrodynamics of superfluid quantum fluids and gases62 215–248 (2019)
  20. S.A. Aseyev, A.S. Akhmanov et alStructural dynamics of free molecules and condensed matter63 103–122 (2020)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions