Issues

 / 

2014

 / 

June

  

Reviews of topical problems


Holographic approach to quark—gluon plasma in heavy ion collisions


V.A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russian Federation

We review recent applications of dual holographic approach to the quark—gluon plasma observed in high energy collisions of relativistic heavy ions. Holography and AdS/CFT duality provide a means to study the properties of strong coupling quantum field theories using higher-dimensional gravity theories. The appearance of quark—gluon plasma in a heavy ion collision can in dual terms be described as the formation of a black hole. To illustrate the major achievements of holographic theory we discuss the calculation of the following quantities: the shear viscosity and other transport coefficients (all calculated by second order hydrodynamic models), the energy dependence of multiplicities, and the anisotropic thermalization and isotropization times. We also compare theoretical predictions with experimental data, including the recent LHC results.

Fulltext is available at IOP
PACS: 04.50.Gh, 11.25.Tq, 12.38.Mh, 24.85.+p (all)
DOI: 10.3367/UFNe.0184.201406a.0569
URL: https://ufn.ru/en/articles/2014/6/a/
Citation: Aref’eva I Ya "Holographic approach to quark—gluon plasma in heavy ion collisions" Phys. Usp. 57 527–555 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 26th, May 2013, revised: 5th, July 2013, 2nd, August 2013

Оригинал: Арефьева И Я «Голографическое описание кварк-глюонной плазмы, образующейся при столкновениях тяжёлых ионов» УФН 184 569–598 (2014); DOI: 10.3367/UFNr.0184.201406a.0569

References (302) Cited by (43) ↓ Similar articles (20)

  1. Fogaça D A, Fariello R et al Communications In Nonlinear Science And Numerical Simulation 83 105144 (2020)
  2. Aref’eva I Phys. Part. Nuclei 51 489 (2020)
  3. Golubtsova A A, Nguyen V H Theor Math Phys 202 214 (2020)
  4. Aref’eva I, Golubtsova A, Gourgoulhon E Phys. Part. Nuclei 51 535 (2020)
  5. Aref’eva I Ya, Rannu K Theor Math Phys 202 272 (2020)
  6. Gal’tsov D  V, Khlopunov M Phys. Rev. D 101 (8) (2020)
  7. Gal’tsov D V, Kulitskii A V Moscow Univ. Phys. 75 1 (2020)
  8. Aref’eva I Ya Phys. Part. Nuclei Lett. 16 486 (2019)
  9. Aref’eva I, Rannu K, Slepov P Physics Letters B 792 470 (2019)
  10. Kosyakov B P, Yu P E, Vronskiĭ M A Class. Quantum Grav. 36 135001 (2019)
  11. Slepov P, Melikhov D, Volobuev I EPJ Web Conf. 222 03024 (2019)
  12. Aref’eva I, Melikhov D, Volobuev I EPJ Web Conf. 222 01008 (2019)
  13. Aref’eva I Ya Theor Math Phys 200 1313 (2019)
  14. Aref’eva I, Volkova V E et al EPJ Web Conf. 191 05010 (2018)
  15. Ageev D S, Aref’eva I Ya et al Nuclear Physics B 931 506 (2018)
  16. Bednyakov V A, Russakovich N A Phys. Part. Nuclei 49 331 (2018)
  17. Aref’eva I, Rannu K J. High Energ. Phys. 2018 (5) (2018)
  18. Aref’eva I Ya, Volovich I V, Inozemcev O V Theor Math Phys 197 1838 (2018)
  19. Slepov P, Volkova V E et al EPJ Web Conf. 191 05011 (2018)
  20. Rannu K, Volkova V E et al EPJ Web Conf. 191 05013 (2018)
  21. Aref’eva I Ya, Aref’eva I Ya i dr Teoreticheskaya Matematicheskaya Fizika 193 493 (2017) [Aref’ eva I Ya, Volovich I V, Inozemcev O V Theor Math Phys 193 1834 (2017)]
  22. Aref’eva I, Bravina L et al EPJ Web Conf. 164 01014 (2017)
  23. Ageev D S, Ageev D S i dr Teoreticheskaya Matematicheskaya Fizika 193 146 (2017) [Ageev D S, Aref’eva I Ya Theor Math Phys 193 1534 (2017)]
  24. Aref’eva I Ya, Khramtsov M A, Tikhanovskaya M D J. High Energ. Phys. 2017 (9) (2017)
  25. Altsybeev I, Feofilov G et al EPJ Web Conf. 125 04011 (2016)
  26. Metsaev R R J. High Energ. Phys. 2016 (5) (2016)
  27. Ageev D S, Ageev D S i dr Teoreticheskaya Matematicheskaya Fizika 188 85 (2016) [Ageev D S, Aref’eva I Ya, Tikhanovskaya M D Theor Math Phys 188 1038 (2016)]
  28. Aref’eva I Ya, Aref’eva I Ya i dr Teoreticheskaya Matematicheskaya Fizika 189 296 (2016) [Aref’eva I Ya, Khramtsov M A, Tikhanovskaya M D Theor Math Phys 189 1660 (2016)]
  29. Smirnov A I, Likhushin Yu B Russ Phys J 59 1319 (2016)
  30. Aref’eva I, Andrianov V A et al EPJ Web Conf. 125 01007 (2016)
  31. Aref’eva I Ya, Khramtsov M A J. High Energ. Phys. 2016 1 (2016)
  32. Aref’eva I Ya, Golubtsova A A, Gourgoulhon E J. High Energ. Phys. 2016 (9) (2016)
  33. Ageev D, Andrianov V A et al EPJ Web Conf. 125 04007 (2016)
  34. Khramtsov M, Andrianov V A et al EPJ Web Conf. 125 05010 (2016)
  35. Aref’eva I (AIP Conference Proceedings) Vol. 1701 (2016) p. 090001
  36. Mamedov Sh Eur. Phys. J. C 76 (2) (2016)
  37. Aref’eva I Ya P-Adic Num Ultrametr Anal Appl 7 111 (2015)
  38. Aref’eva I Ya, Aref’eva I Ya Teoreticheskaya Matematicheskaya Fizika 184 398 (2015) [Aref’eva I Ya Theor Math Phys 184 1239 (2015)]
  39. Aref’eva I Ya, Aref’eva I Ya i dr Teoreticheskaya Matematicheskaya Fizika 182 3 (2015) [Aref’eva I Ya Theor Math Phys 184 1239 (2015)]
  40. Arefeva I Ya, Bagrov A A Theor Math Phys 182 1 (2015)
  41. Aref’eva I Ya, Golubtsova A A J. High Energ. Phys. 2015 (4) (2015)
  42. Ageev D S, Aref’eva I Ya J. Exp. Theor. Phys. 120 436 (2015)
  43. Smirnov A I, Likhushin Yu B Russ Phys J 58 1026 (2015)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions