Issues

 / 

2014

 / 

November

  

Methodological notes


On the multiple internal reflections of particles and phonons tunneling in one, two, or three dimensions


Institute for Nuclear Research of National Academy of Sciences Ukraine, prosp. Nauki 47, Kiev, 30650, Ukraine

An analysis is given of multiple internal reflections undergone by particles and phonons undergoing one-, two-, and three-dimensional tunneling. Results obtained by using the time dependent Schrödinger equation for nonrelativistic particles and those obtained with the time dependent Helmholtz equation for electromagnetic waves are presented. The paper closes with conclusions and considerations for future research.

Fulltext pdf (537 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201411h.1255
PACS: 03.65.Xp, 42.25.−p, 42.50.Xa (all)
DOI: 10.3367/UFNe.0184.201411h.1255
URL: https://ufn.ru/en/articles/2014/11/g/
000349435700007
2-s2.0-84922687937
2014PhyU...57.1136O
Citation: Olkhovsky V S "On the multiple internal reflections of particles and phonons tunneling in one, two, or three dimensions" Phys. Usp. 57 1136–1145 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 10th, March 2014, revised: 15th, May 2014, 20th, May 2014

Оригинал: Ольховский В С «O многократных внутренних отражениях туннелирующих частиц и фотонов в одномерном, двухмерном и трёхмерном туннелировании» УФН 184 1255–1264 (2014); DOI: 10.3367/UFNr.0184.201411h.1255

References (66) Cited by (6) Similar articles (20) ↓

  1. V.S. Olkhovsky “On time as a quantum observable canonically conjugate to energyPhys. Usp. 54 829–835 (2011)
  2. V.M. Rozenbaum, I.V. Shapochkina, L.I. Trakhtenberg “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motorsPhys. Usp. 67 1046–1055 (2024)
  3. A.A. Kolokolov “Fresnel formulas and the principle of causalityPhys. Usp. 42 931 (1999)
  4. F.V. Ignaovich, V.K. Ignatovich “Optics of anisotropic mediaPhys. Usp. 55 709–720 (2012)
  5. M.V. Davidovich “On energy and momentum conservation laws for an electromagnetic field in a medium or at diffraction on a conducting platePhys. Usp. 53 595–609 (2010)
  6. A.P. Potylitsyn, D.Yu. Sergeeva et alDiffraction radiation from a charge as radiation from a superluminal source in a vacuumPhys. Usp. 63 303–308 (2020)
  7. A.G. Shalashov, E.D. Gospodchikov “'Anomalous' dissipation of a paraxial wave beam propagating along an absorbing planePhys. Usp. 65 1303–1312 (2022)
  8. N.V. Selina “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lensPhys. Usp. 65 406–414 (2022)
  9. B.Ya. Zel’dovich, M.J. Soileau “Bi-frequency pendulum on a rotary platform: modeling various optical phenomenaPhys. Usp. 47 1239–1255 (2004)
  10. A.V. Shepelev “Can the radiance increase in a noninverted medium?Phys. Usp. 42 203–204 (1999)
  11. L.A. Vainshtein “Propagation of pulsesSov. Phys. Usp. 19 189–205 (1976)
  12. A.I. Frank “On the properties of the "potential" neutron dispersion law in a refractive mediumPhys. Usp. 61 900–901 (2018)
  13. A.I. Frank “Interaction of a wave with an accelerating object and the equivalence principlePhys. Usp. 63 500–502 (2020)
  14. G.S. Golitsyn “Demonstrativeness of using energy rather than mass as the unit of measure for a number of problems in physics, mechanics, and geophysicsPhys. Usp. 51 723–725 (2008)
  15. V.V. Shevchenko “Forward and backward waves: three definitions and their interrelation and applicabilityPhys. Usp. 50 287–292 (2007)
  16. V.L. Kraĭnov, L.P. Presnyakov “Phase functions for potential scattering in opticsPhys. Usp. 36 (7) 621–627 (1993)
  17. N.P. Klepikov “Radiation damping forces and radiation from charged particlesSov. Phys. Usp. 28 506–520 (1985)
  18. V.I. Ritus “Lagrange equations of motion of particles and photons in the Schwarzschild fieldPhys. Usp. 58 1118–1123 (2015)
  19. A.N. Herega, N.G. Drik, A.P. Ugol’nikov “Hybrid ramified Sierpinski carpet: percolation transition, critical exponents, and force fieldPhys. Usp. 55 519–521 (2012)
  20. A.G. Shalashov, E.D. Gospodchikov “Structure of the Maxwell equations in the region of linear coupling of electromagnetic waves in weakly inhomogeneous anisotropic and gyrotropic mediaPhys. Usp. 55 147–160 (2012)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions