Methodological notes

Turing patterns and Newell—Whitehead—Segel amplitude equation

A.A. Dorodnicyn Computing Centre, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russian Federation

Two-dimensional (2D) reaction—diffusion systems with linear and nonlinear diffusion terms are examined for their behavior when a Turing instability arises and stationary spatial patterns form. It is shown that a 2D nonlinear analysis for striped patterns leads to the Newell—Whitehead—Segel amplitude equation in which the contribution from spatial derivatives depends only on the linearized diffusion term of the original model. In the absence of this contribution, i.e., for the normal forms, standard methods are used to calculate the coefficients of the equation.

Fulltext is available at IOP
PACS: 05.45.−a, 47.54.−r, 82.40.Bj, 82.40.Ck (all)
DOI: 10.3367/UFNe.0184.201410j.1149
Citation: Zemskov E P "Turing patterns and Newell—Whitehead—Segel amplitude equation" Phys. Usp. 57 1035–1037 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, December 2013, revised: 11th, February 2014, 11th, February 2014

Оригинал: Земсков Е П «Тьюринговы структуры и амплитудное уравнение Ньюэлла—Уайтхеда—Сегела» УФН 184 1149–1151 (2014); DOI: 10.3367/UFNr.0184.201410j.1149

References (18) Cited by (1) Similar articles (13) ↓

  1. A.I. Lavrova, E.B. Postnikov, Yu.M. Romanovsky “Brusselator: an abstract chemical reaction?52 1239–1244 (2009)
  2. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systems56 683–690 (2013)
  3. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particles42 573–590 (1999)
  4. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sources32 723–731 (1989)
  5. E.N. Rumanov “Critical phenomena far from equilibrium56 93–102 (2013)
  6. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systems51 395–407 (2008)
  7. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic model57 453–460 (2014)
  8. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?64 (10) (2021)
  9. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signals50 819–834 (2007)
  10. A. Loskutov “Dynamical chaos: systems of classical mechanics50 939–964 (2007)
  11. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamics46 393–403 (2003)
  12. V.Yu. Shishkov, E.S. Andrianov et alRelaxation of interacting open quantum systems62 510–523 (2019)
  13. V.S. Vavilov, P.C. Euthymiou, G.E. Zardas “Persistent photoconductivity in semiconducting III-V compounds42 199–201 (1999)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions