Issues

 / 

2014

 / 

October

  

Methodological notes


Turing patterns and Newell—Whitehead—Segel amplitude equation


A.A. Dorodnicyn Computing Centre, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119991, Russian Federation

Two-dimensional (2D) reaction—diffusion systems with linear and nonlinear diffusion terms are examined for their behavior when a Turing instability arises and stationary spatial patterns form. It is shown that a 2D nonlinear analysis for striped patterns leads to the Newell—Whitehead—Segel amplitude equation in which the contribution from spatial derivatives depends only on the linearized diffusion term of the original model. In the absence of this contribution, i.e., for the normal forms, standard methods are used to calculate the coefficients of the equation.

Fulltext pdf (412 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0184.201410j.1149
PACS: 05.45.−a, 47.54.−r, 82.40.Bj, 82.40.Ck (all)
DOI: 10.3367/UFNe.0184.201410j.1149
URL: https://ufn.ru/en/articles/2014/10/f/
000346960100002
2-s2.0-84920033426
2014PhyU...57.1035Z
Citation: Zemskov E P "Turing patterns and Newell—Whitehead—Segel amplitude equation" Phys. Usp. 57 1035–1037 (2014)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 25th, December 2013, revised: 11th, February 2014, 11th, February 2014

Оригинал: Земсков Е П «Тьюринговы структуры и амплитудное уравнение Ньюэлла—Уайтхеда—Сегела» УФН 184 1149–1151 (2014); DOI: 10.3367/UFNr.0184.201410j.1149

References (18) Cited by (3) Similar articles (16) ↓

  1. A.I. Lavrova, E.B. Postnikov, Yu.M. Romanovsky “Brusselator: an abstract chemical reaction?Phys. Usp. 52 1239–1244 (2009)
  2. O.V. Rudenko “Nonlinear dynamics of quadratically cubic systemsPhys. Usp. 56 683–690 (2013)
  3. Yu.L. Klimontovich “What are stochastic filtering and stochastic resonance?Phys. Usp. 42 37–44 (1999)
  4. S.N. Gordienko “Irreversibility and the probabilistic treatment of the dynamics of classical particlesPhys. Usp. 42 573–590 (1999)
  5. P.S. Landa, Ya.B. Duboshinskii “Self-oscillatory systems with high-frequency energy sourcesSov. Phys. Usp. 32 723–731 (1989)
  6. E.N. Rumanov “Critical phenomena far from equilibriumPhys. Usp. 56 93–102 (2013)
  7. V.I. Klyatskin “Statistical topography and Lyapunov exponents in stochastic dynamical systemsPhys. Usp. 51 395–407 (2008)
  8. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  9. A.V. Borisov, A.O. Kazakov, S.P. Kuznetsov “Nonlinear dynamics of the rattleback: a nonholonomic modelPhys. Usp. 57 453–460 (2014)
  10. A.N. Pavlov, V.S. Anishchenko “Multifractal analysis of complex signalsPhys. Usp. 50 819–834 (2007)
  11. A. Loskutov “Dynamical chaos: systems of classical mechanicsPhys. Usp. 50 939–964 (2007)
  12. A.V. Borisov, I.S. Mamaev “Strange attractors in rattleback dynamicsPhys. Usp. 46 393–403 (2003)
  13. V.Yu. Shishkov, E.S. Andrianov et alRelaxation of interacting open quantum systemsPhys. Usp. 62 510–523 (2019)
  14. N.V. Selina “Light diffraction in a plane-parallel layered structure with the parameters of a Pendry lensPhys. Usp. 65 406–414 (2022)
  15. G.S. Golitsyn “A N Kolmogorov's 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosmPhys. Usp. 67 80–90 (2024)
  16. V.S. Vavilov, P.C. Euthymiou, G.E. Zardas “Persistent photoconductivity in semiconducting III-V compoundsPhys. Usp. 42 199–201 (1999)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions