Issues

 / 

2013

 / 

November

  

Methodological notes


Bernstein’s paradox of entangled quantum states

 a, b,  a, b
a Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory 1 build. 2, Moscow, 119991, Russian Federation
b International Laser Center of M.V. Lomonosov Moscow State University, Vorobevy gory, Moscow, 119992, Russian Federation

Bernstein’s classical paradox of right colored-faced tetrahedron, while designed to illustrate the subtleties of probability theory, is strongly flawed in being asymmetric: three of the tetrahedron’s faces are single- and one, is multi-colored. Therefore, even prior to formal calculations, a strong suspicion as to the independence of outcoming statistics arises. Not so with entangled states. In the schematic solutions proposed, while photon detection channels are completely symmetric and equivalent, the events that occur in them turn out to be statistically dependent, making the Bernstein paradox even more impressive due to the unusual behavior of quantum particles not obeying classical laws. As an illustrative example of the probability paradox, Greenberger—Horne—Zeilinger multiqubit states are considered.

Fulltext pdf (447 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0183.201311e.1231
PACS: 03.65.Ud, 42.65.Lm (all)
DOI: 10.3367/UFNe.0183.201311e.1231
URL: https://ufn.ru/en/articles/2013/11/d/
000331111800004
2-s2.0-84893841610
2013PhyU...56.1126B
Citation: Belinskii A V, Chirkin A S "Bernstein's paradox of entangled quantum states" Phys. Usp. 56 1126–1131 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 22nd, April 2013, revised: 13th, June 2013, 30th, May 2013

Оригинал: Белинский А В, Чиркин А С «Парадокс Бернштейна с запутанными квантовыми состояниями» УФН 183 1231–1236 (2013); DOI: 10.3367/UFNr.0183.201311e.1231

References (41) Cited by (3) Similar articles (20) ↓

  1. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)
  2. A.V. Belinsky “Wigner's friend paradox: does objective reality not exist?Phys. Usp. 63 1256–1263 (2020)
  3. A.V. Belinsky, A.A. Klevtsov “Nonlocal classical "realism" and quantum superposition as the nonexistence of definite pre-measurement values of physical quantitiesPhys. Usp. 61 313–319 (2018)
  4. D.N. Klyshko “A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principleSov. Phys. Usp. 31 74–85 (1988)
  5. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherencePhys. Usp. 61 1016–1025 (2018)
  6. A.V. Belinskii “Bell’s theorem for trichotomic observablesPhys. Usp. 40 305–316 (1997)
  7. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variablesSov. Phys. Usp. 32 555–563 (1989)
  8. V.P. Demutskii, R.V. Polovin “Conceptual problems in quantum mechanicsSov. Phys. Usp. 35 (10) 857–896 (1992)
  9. A.V. Belinskii “Bell’s theorem without the hypothesis of localityPhys. Usp. 37 219–222 (1994)
  10. B.B. Kadomtsev “Irreversibility in quantum mechanicsPhys. Usp. 46 1183–1201 (2003)
  11. A.V. Belinsky “On David Bohm's 'pilot-wave' conceptPhys. Usp. 62 1268–1278 (2019)
  12. V.L. Gorshenin, B.N. Nougmanov, F.Ya. Khalili “On 'Schrödinger's cat' fringesPhys. Usp. 67 938–942 (2024)
  13. V.V. Mityugov “The tree of paradoxPhys. Usp. 36 (8) 744–753 (1993)
  14. M.B. Mensky “Measurability of quantum fields and the energy—time uncertainty relationPhys. Usp. 54 519–528 (2011)
  15. B.B. Kadomtsev “Classical and quantum irreversibilityPhys. Usp. 38 923–929 (1995)
  16. A.V. Belinskii “Bell’s paradoxes without the introduction of hidden variablesPhys. Usp. 37 413–419 (1994)
  17. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  18. V.S. Pronskikh “Measurement problems: contemporary discussions and modelsPhys. Usp. 63 192–200 (2020)
  19. A.V. Belinskii “Regular and quasiregular spectra of disordered layer structuresPhys. Usp. 38 653–664 (1995)
  20. M.V. Lebedev, O.V. Misochko “On the question of a classical analog of the Fano problemPhys. Usp. 65 627–640 (2022)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions