Reviews of topical problems

Modeling of configurational transitions in atomic systems

 a,  b
a Department of Chemistry, University of Chicago, 5735 South Ellis Ave., Chicago, Illinois, 60637, USA
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

Configurational transitions in atomic systems, i.e. transitions that change the system’s geometric structure, include chemical reactions in gases, transitions between aggregate states of a polyatomic system, i.e. the phase transitions, and nanocatalytic processes. These transitions are analyzed from the standpoint of the behavior of the system on its effective Potential Energy Surface (PES), so that the transition results from passage between different local minima of the PES. It is shown that the density functional theory (DFT) is suitable in principle for the analysis of complex atomic systems, but based on contemporary computer codes, this method is not suitable even for simple atomic systems, such as heavy atoms or metal clusters. Next, a statistical determination of energetic parameters of atomic systems does not allow to analyze the dynamics of configuration transitions; in particular, the activation energy of a chemical process differs significantly from the height of a barrier which separates the atomic configurations of the initial and final states of the transition. In particular, the statistical models, including DFT, give a melting point for clusters with a pairwise atomic interaction that is twice that from dynamic models which account for thermal motion of atoms. Hence the optimal description of configurational transitions for atomic systems may be based on joining the DFT methods for determination the PES of this system with molecular dynamics, to account for thermal motion of atoms.

Fulltext is available at IOP
PACS: 36.40.−c, 36.40.Ei, 64.70.D−, 71.15.Mb, 81.16.Hc, 82.30.−b (all)
DOI: 10.3367/UFNe.0183.201310b.1029
Citation: Berry R S, Smirnov B M "Modeling of configurational transitions in atomic systems" Phys. Usp. 56 973–998 (2013)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 21st, January 2013, revised: 6th, April 2013, 16th, April 2013

Оригинал: Берри Р С, Смирнов Б М «Моделирование конфигурационных переходов в атомных системах» УФН 183 1029–1057 (2013); DOI: 10.3367/UFNr.0183.201310b.1029

References (309) Cited by (6) Similar articles (20) ↓

  1. R.S. Berry, B.M. Smirnov “Phase transitions in various kinds of clusters52 137–164 (2009)
  2. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensors60 1236–1267 (2017)
  3. R.S. Berry, B.M. Smirnov “Phase transitions and adjacent phenomena in simple atomic systems48 345–388 (2005)
  4. G.N. Makarov “Experimental methods for determining the melting temperature and the heat of melting of clusters and nanoparticles53 179–198 (2010)
  5. G.N. Makarov “Kinetic methods for measuring the temperature of clusters and nanoparticles in molecular beams54 351–370 (2011)
  6. B.M. Smirnov “Processes involving clusters and small particles in a buffer gas54 691–721 (2011)
  7. B.M. Smirnov “Melting of clusters with pair interaction of atoms37 1079–1096 (1994)
  8. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  9. G.N. Makarov “Cluster temperature. Methods for its measurement and stabilization51 319–353 (2008)
  10. B.M. Smirnov “Clusters with close packing and filled shells36 (10) 933–955 (1993)
  11. D.K. Belashchenko “Computer simulation of liquid metals56 1176–1216 (2013)
  12. G.N. Makarov “Laser IR fragmentation of molecular clusters: the role of channels for energy input and relaxation, influence of surroundings, dynamics of fragmentation60 227–258 (2017)
  13. G.N. Makarov “Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography56 643–682 (2013)
  14. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  15. B.M. Smirnov “Processes in expanding and condensing gases37 621–657 (1994)
  16. G.N. Makarov “Low energy methods of molecular laser isotope separation58 670–700 (2015)
  17. A.V. Eletskii, B.M. Smirnov “Fullerenes and carbon structures38 935–964 (1995)
  18. A.V. Eletskii, I.M. Iskandarova et alGraphene: fabrication methods and thermophysical properties54 227–258 (2011)
  19. T.V. Perevalov, V.A. Gritsenko “Application and electronic structure of high-permittivity dielectrics53 561–575 (2010)
  20. G.N. Makarov “Control of the parameters and composition of molecular and cluster beams by means of IR lasers61 617–644 (2018)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions