Issues

 / 

2012

 / 

April

  

Reviews of topical problems


Generalized dynamical mean-field theory in the physics of strongly correlated systems

 a,  a,  a, b
a Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation
b Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation

This review discusses the generalization of dynamical mean-field theory (DMFT) for strongly correlated electronic systems to include additional interactions necessary for the correct description of physical effects in such systems. Specifically, the additional interactions include: (1) the interaction of electrons with antiferromagnetic (or charge) order-parameter fluctuations in high-temperature superconductors leading to the formation of a pseudogap state; (2) scattering on static disorder and its role in the general picture of the Anderson—Hubbard metal—insulator transition, and (3) electron—phonon interaction and the features of electronic spectra in strongly correlated systems. The proposed DMFT+Σ approach incorporates the above interactions by introducing into the general DMFT model an additional (generally momentum-dependent) self-energy Σ which is calculated in a self-consistent way without violating the general structure of the DMFT iteration cycle. The paper formulates a general calculational scheme for both one-particle (spectral functions and densities of states) and two-particle (optical conductivity) properties. The problem of pseudogap formation is examined, including Fermi arc formation and partial destruction of the Fermi surface, as are the metal—insulator transition in the disordered Anderson—Hubbard model, and the general picture of kink formation in the electronic spectra of strongly correlated systems. A generalization of the DMFT+Σ approach to realistic materials with strong electron—electron correlations is presented based on the LDA+DMFT method. The general model of the LDA+DMFT method is reviewed, as are some of its applications to real systems. The generalized LDA+DMFT+Σ approach is employed to calculate pseudogap states in electron- and hole-doped HTSC cuprates. Comparisons with angle-resolved photoemission spectroscopy (ARPES) results are presented.

Fulltext is available at IOP
PACS: 71.10.Fd, 71.10.Hf, 71.20.−b, 71.27.+a, 71.30.+h, 72.15.Rn, 74.72.−h (all)
DOI: 10.3367/UFNe.0182.201204a.0345
URL: https://ufn.ru/en/articles/2012/4/a/
Citation: Kuchinskii E Z, Nekrasov I A, Sadovskii M V "Generalized dynamical mean-field theory in the physics of strongly correlated systems" Phys. Usp. 55 325–355 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, June 2011, 29th, June 2011

Оригинал: Кучинский Э З, Некрасов И А, Садовский М В «Обобщённая теория динамического среднего поля в физике сильнокоррелированных систем» УФН 182 345–378 (2012); DOI: 10.3367/UFNr.0182.201204a.0345

References (190) Cited by (20) Similar articles (20) ↓

  1. Yu.A. Izyumov “Hubbard model of strong correlations38 385–408 (1995)
  2. A.S. Mishchenko “Electron — phonon coupling in underdoped high-temperature superconductors52 1193–1212 (2009)
  3. M.V. Sadovskii “High-temperature superconductivity in iron-based layered compounds51 1201–1227 (2008)
  4. A.A. Shashkin “Metal-insulator transitions and the effects of electron-electron interactions in two-dimensional electron systems48 129–149 (2005)
  5. V.T. Dolgopolov “Two-dimensional system of strongly interacting electrons in silicon (100) structures62 633–648 (2019)
  6. Yu.A. Izyumov, E.Z. Kurmaev “Materials with strong electron correlations51 23–56 (2008)
  7. I.S. Lyubutin, A.G. Gavriliuk “Research on phase transformations in 3d-metal oxides at high and ultrahigh pressure: state of the art52 989–1017 (2009)
  8. M.V. Sadovskii “Pseudogap in high-temperature superconductors44 515–539 (2001)
  9. V.V. Val’kov, D.M. Dzebisashvili et alThe spin-polaron concept in the theory of normal and superconducting states of cuprate”, accepted
  10. V.R. Shaginyan, M.Ya. Amusia, K.G. Popov “Universal behavior of strongly correlated Fermi systems50 563–593 (2007)
  11. A.V. Nikolaev, A.V. Tsvashchenko “The puzzle of the γ→α and other phase transitions in cerium55 657–680 (2012)
  12. Yu.B. Kudasov “Short-range order in strongly correlated Fermi systems46 117–138 (2003)
  13. N.B. Ivanova, S.G. Ovchinnikov et alSpecific features of spin, charge, and orbital ordering in cobaltites52 789–810 (2009)
  14. V.F. Gantmakher, V.T. Dolgopolov “Superconductor-insulator quantum phase transition53 1–49 (2010)
  15. R.O. Zaitsev, E.V. Kuz’min, S.G. Ovchinnikov “Fundamental ideas on metal-dielectric transitions in 3d-metal compounds29 322–342 (1986)
  16. M.Yu. Kagan, V.A. Mitskan, M.M. Korovushkin “Anomalous superconductivity and superfluidity in repulsive fermion systems58 733–761 (2015)
  17. B.M. Smirnov “Metal nanostructures: from clusters to nanocatalysis and sensors60 1236–1267 (2017)
  18. E.G. Maksimov, Yu.I. Shilov “Hydrogen at high pressure42 1121–1138 (1999)
  19. R.S. Berry, B.M. Smirnov “Modeling of configurational transitions in atomic systems56 973–998 (2013)
  20. E.G. Maksimov, A.E. Karakozov “On nonadiabatic effects in phonon spectra of metals51 535–549 (2008)

The list is formed automatically.

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions