Issues

 / 

2012

 / 

April

  

Reviews of topical problems


Generalized dynamical mean-field theory in the physics of strongly correlated systems

 a,  a,  a, b
a Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, ul. Amundsena 106, Ekaterinburg, 620016, Russian Federation
b Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, S Kovalevskoi str. 18, Ekaterinburg, 620108, Russian Federation

This review discusses the generalization of dynamical mean-field theory (DMFT) for strongly correlated electronic systems to include additional interactions necessary for the correct description of physical effects in such systems. Specifically, the additional interactions include: (1) the interaction of electrons with antiferromagnetic (or charge) order-parameter fluctuations in high-temperature superconductors leading to the formation of a pseudogap state; (2) scattering on static disorder and its role in the general picture of the Anderson—Hubbard metal—insulator transition, and (3) electron—phonon interaction and the features of electronic spectra in strongly correlated systems. The proposed DMFT+Σ approach incorporates the above interactions by introducing into the general DMFT model an additional (generally momentum-dependent) self-energy Σ which is calculated in a self-consistent way without violating the general structure of the DMFT iteration cycle. The paper formulates a general calculational scheme for both one-particle (spectral functions and densities of states) and two-particle (optical conductivity) properties. The problem of pseudogap formation is examined, including Fermi arc formation and partial destruction of the Fermi surface, as are the metal—insulator transition in the disordered Anderson—Hubbard model, and the general picture of kink formation in the electronic spectra of strongly correlated systems. A generalization of the DMFT+Σ approach to realistic materials with strong electron—electron correlations is presented based on the LDA+DMFT method. The general model of the LDA+DMFT method is reviewed, as are some of its applications to real systems. The generalized LDA+DMFT+Σ approach is employed to calculate pseudogap states in electron- and hole-doped HTSC cuprates. Comparisons with angle-resolved photoemission spectroscopy (ARPES) results are presented.

Fulltext pdf (2.3 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201204a.0345
PACS: 71.10.Fd, 71.10.Hf, 71.20.−b, 71.27.+a, 71.30.+h, 72.15.Rn, 74.72.−h (all)
DOI: 10.3367/UFNe.0182.201204a.0345
URL: https://ufn.ru/en/articles/2012/4/a/
000306528000001
2-s2.0-84864057951
2012PhyU...55..325K
Citation: Kuchinskii E Z, Nekrasov I A, Sadovskii M V "Generalized dynamical mean-field theory in the physics of strongly correlated systems" Phys. Usp. 55 325–355 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, June 2011, 29th, June 2011

Оригинал: Кучинский Э З, Некрасов И А, Садовский М В «Обобщённая теория динамического среднего поля в физике сильнокоррелированных систем» УФН 182 345–378 (2012); DOI: 10.3367/UFNr.0182.201204a.0345

References (190) Cited by (39) ↓ Similar articles (20)

  1. Lyakhova Ya S, Astretsov G V, Rubtsov A N Phys. Usp. 66 775 (2023)
  2. Martin N, Gauvin-Ndiaye C, Tremblay A -M S Phys. Rev. B 107 (7) (2023)
  3. Lyakhova Ya S, Astretsov G V, Rubtsov A N Uspekhi Fizicheskikh Nauk 825 (2023)
  4. Kuchinskii E Z, Kuleeva N A, Sadovskii M V J. Exp. Theor. Phys. 137 927 (2023)
  5. Kuchinskii E Z, Kuleeva N A et al J. Exp. Theor. Phys. 136 368 (2023)
  6. Gilmutdinov V F, Timirgazin M A, Arzhnikov A K Journal Of Magnetism And Magnetic Materials 560 169605 (2022)
  7. Kuchinskii E Z, Kuleeva N A et al Jetp Lett. 115 402 (2022)
  8. Shakhova V M, Maltsev D A et al Phys. Chem. Chem. Phys. 24 19333 (2022)
  9. Krien F, Worm P et al Commun Phys 5 (1) (2022)
  10. Vedeneev S I Uspekhi Fizicheskikh Nauk 191 937 (2021) [Vedeneev S I Phys.-Usp. 64 890 (2021)]
  11. Vanraes P, Parayil V S, Bogaerts A 8 (4) (2021)
  12. Val’kov V V, Dzebisashvili D M et al Phys.-Usp. 64 641 (2021)
  13. Sadovskii M V Phys.-Usp. 64 175 (2021)
  14. Kizhaev F G, Medvedev N N, Starygina O V Russ Phys J 63 1562 (2021)
  15. Kagan M Yu, Mazur E A J. Exp. Theor. Phys. 132 596 (2021)
  16. Kuchinskii E Z, Kuleeva N A J. Exp. Theor. Phys. 133 366 (2021)
  17. Maltsev D A, Lomachuk Yu V et al Phys. Rev. B 103 (20) (2021)
  18. Eroshenko Yu N Phys.-Usp. 64 321 (2021)
  19. Kuleeva N A, Kuchinskii E Z, Sadovskii M V Jetp Lett. 112 555 (2020)
  20. Lyubovskii R B, Pesotskii S I et al Tech. Phys. Lett. 44 1035 (2018)
  21. Bobrov V B, Trigger S A Bull. Lebedev Phys. Inst. 45 127 (2018)
  22. Rohringer G, Hafermann H et al Rev. Mod. Phys. 90 (2) (2018)
  23. Bobrov V B, Trigger S A Tech. Phys. 63 1092 (2018)
  24. Kuchinskii E Z, Kuleeva N A, Sadovskii M V J. Exp. Theor. Phys. 125 111 (2017)
  25. Kuchinskii E Z, Kuleeva N A, Sadovskii M V 43 17 (2017)
  26. Kuchinskii E Z, Kuleeva N A, Sadovskii M V J. Exp. Theor. Phys. 125 1127 (2017)
  27. Mitsek O  I, Pushkar V  M Metallofiz. Noveishie Tekhnol. 37 13 (2016)
  28. Kuchinskii E Z, Kuleeva N A, Sadovskii M V J Supercond Nov Magn 29 1097 (2016)
  29. Mitsek O  I Metallofiz. Noveishie Tekhnol. 36 1473 (2016)
  30. Bobrov V B Indian J Phys 90 853 (2016)
  31. Kuchinskii E Z, Sadovskii M V J. Exp. Theor. Phys. 122 509 (2016)
  32. Kuzian R O, Krasovskii E E Phys. Rev. B 94 (11) (2016)
  33. Kuchinskii E Z, Kuleeva N A, Sadovskii M V J. Exp. Theor. Phys. 122 375 (2016)
  34. Zaitsev R O Jetp Lett. 101 199 (2015)
  35. Kuchinskii E Z, Kuleeva N A, Sadovskii M V J. Exp. Theor. Phys. 120 1055 (2015)
  36. Kuchinskii E Z, Kuleeva N A, Sadovskii M V Jetp Lett. 100 192 (2014)
  37. Kuleeva N A, Kuchinskii E Z, Sadovskii M V J. Exp. Theor. Phys. 119 264 (2014)
  38. Kuchinskii E Z, Nekrasov I A, Pavlov N S J. Exp. Theor. Phys. 117 327 (2013)
  39. Kuleeva N A, Kuchinskii E Z J. Exp. Theor. Phys. 116 1027 (2013)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions