Issues

 / 

2012

 / 

November

  

Reviews of topical problems


Where is the supercritical fluid on the phase diagram?

 a, b,  a,  a, b,  c,  a,  a
a Institute for High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse 14, Troitsk, Moscow, 108840, Russian Federation
b Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
c South East Physics Network and School of Physics, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

We discuss the fluid state of matter at high temperature and pressure. We review the existing ways in which the boundary between a liquid and a quasigas fluid above the critical point are discussed. We show that the proposed ’thermodynamic’ continuation of the boiling line, the ’Widom line’, exists as a line near the critical point only, but becomes a bunch of short lines at a higher temperature. We subsequently propose a new ’dynamic’ line separating a liquid and a gas-like fluid. The dynamic line is related to different types of particle trajectories and different diffusion mechanisms in liquids and dense gases. The location of the line on the phase diagram is determined by the equality of the liquid relaxation time and the minimal period of transverse acoustic excitations. Crossing the line results in the disappearance of transverse waves at all frequencies, the diffusion coefficient acquiring a value close to that at the critical point, the speed of sound becoming twice the particle thermal speed, and the specific heat reaching 2kB. In the high-pressure limit, the temperature on the dynamic line depends on pressure in the same way as does the melting temperature. In contrast to the Widom line, the proposed dynamic line separates liquid and gas-like fluids above the critical point at arbitrarily high pressure and temperature. We propose calling the new dynamic line the ’Frenkel line’.

Fulltext pdf (963 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0182.201211a.1137
PACS: 62.10.+s, 62.50.−p, 63.50.−x, 64.60.F−, 64.60.fd, 65.20.De, 66.20.Cy (all)
DOI: 10.3367/UFNe.0182.201211a.1137
URL: https://ufn.ru/en/articles/2012/11/a/
000314808600001
2-s2.0-84873901364
2012PhyU...55.1061B
Citation: Brazhkin V V, Lyapin A G, Ryzhov V N, Trachenko K, Fomin Yu D, Tsiok E N "Where is the supercritical fluid on the phase diagram?" Phys. Usp. 55 1061–1079 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, September 2011, revised: 31st, October 2011, 2nd, November 2011

Оригинал: Бражкин В В, Ляпин А Г, Рыжов В Н, Траченко К, Фомин Ю Д, Циок Е Н «Где находится область сверхкритического флюида на фазовой диаграмме?» УФН 182 1137–1156 (2012); DOI: 10.3367/UFNr.0182.201211a.1137

References (73) Cited by (123) Similar articles (20) ↓

  1. V.N. Ryzhov, E.E. Tareyeva et alComplex phase diagrams of systems with isotropic potentials: results of computer simulations63 417–439 (2020)
  2. V.N. Ryzhov, E.E. Tareyeva et alBerezinskii—Kosterlitz—Thouless transition and two-dimensional melting60 857–885 (2017)
  3. A.A. Likal’ter “Critical points of condensation in Coulomb systems43 777–797 (2000)
  4. V.E. Fortov, A.G. Khrapak et alDusty plasmas47 447–492 (2004)
  5. S.M. Stishov “The thermodynamics of melting of simple substances17 625–643 (1975)
  6. B.M. Smirnov “Scaling method in atomic and molecular physics44 1229–1253 (2001)
  7. D.K. Belashchenko “Computer simulation of liquid metals56 1176–1216 (2013)
  8. A.A. Likal’ter “Gaseous metals35 (7) 591–605 (1992)
  9. V.V. Brazhkin, A.G. Lyapin “Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth’s inner core43 493–508 (2000)
  10. D.S. Sanditov, M.I. Ojovan “Relaxation aspects of the liquid—glass transition62 111–130 (2019)
  11. D.K. Belashchenko “Does the embedded atom model have predictive power?63 1161–1187 (2020)
  12. A.V. Bushman, V.E. Fortov “Model equations of state26 465–496 (1983)
  13. I.M. Lifshits, A.Yu. Grosberg, A.R. Khokhlov “Volume interactions in the statistical physics of a polymer macromolecule22 123–142 (1979)
  14. V.V. Brazhkin “Ultrahard nanomaterials: myths and reality63 523–544 (2020)
  15. A.I. Zhmakin “Physical aspects of cryobiology51 231–252 (2008)
  16. B.A. Klumov “Universal structural properties of three-dimensional and two-dimensional melts66 288–311 (2023)
  17. A.N. Utyuzh, A.V. Mikheyenkov “Hydrogen and its compounds under extreme pressure60 886–901 (2017)
  18. V.N. Pokrovskii “Dynamics of weakly-coupled linear macromolecules35 (5) 384–399 (1992)
  19. A.N. Semenov, A.R. Khokhlov “Statistical physics of liquid-crystalline polymers31 988–1014 (1988)
  20. S.M. Stishov, A.E. Petrova “Itinerant helimagnet MnSi54 1117–1130 (2011)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions