Issues

 / 

2012

 / 

November

  

Reviews of topical problems


Where is the supercritical fluid on the phase diagram?

 a, b,  a,  a, b,  c,  a,  a
a Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow, Russian Federation
b Moscow Institute of Physics and Technology (State University), Institutskii per. 9, Dolgoprudnyi, Moscow Region, 141700, Russian Federation
c South East Physics Network and School of Physics, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

We discuss the fluid state of matter at high temperature and pressure. We review the existing ways in which the boundary between a liquid and a quasigas fluid above the critical point are discussed. We show that the proposed ’thermodynamic’ continuation of the boiling line, the ’Widom line’, exists as a line near the critical point only, but becomes a bunch of short lines at a higher temperature. We subsequently propose a new ’dynamic’ line separating a liquid and a gas-like fluid. The dynamic line is related to different types of particle trajectories and different diffusion mechanisms in liquids and dense gases. The location of the line on the phase diagram is determined by the equality of the liquid relaxation time and the minimal period of transverse acoustic excitations. Crossing the line results in the disappearance of transverse waves at all frequencies, the diffusion coefficient acquiring a value close to that at the critical point, the speed of sound becoming twice the particle thermal speed, and the specific heat reaching 2kB. In the high-pressure limit, the temperature on the dynamic line depends on pressure in the same way as does the melting temperature. In contrast to the Widom line, the proposed dynamic line separates liquid and gas-like fluids above the critical point at arbitrarily high pressure and temperature. We propose calling the new dynamic line the ’Frenkel line’.

Fulltext is available at IOP
PACS: 62.10.+s, 62.50.−p, 63.50.−x, 64.60.F−, 64.60.fd, 65.20.De, 66.20.Cy (all)
DOI: 10.3367/UFNe.0182.201211a.1137
URL: https://ufn.ru/en/articles/2012/11/a/
Citation: Brazhkin V V, Lyapin A G, Ryzhov V N, Trachenko K, Fomin Yu D, Tsiok E N "Where is the supercritical fluid on the phase diagram?" Phys. Usp. 55 1061–1079 (2012)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 20th, September 2011, revised: 31st, October 2011, 2nd, November 2011

Оригинал: Бражкин В В, Ляпин А Г, Рыжов В Н, Траченко К, Фомин Ю Д, Циок Е Н «Где находится область сверхкритического флюида на фазовой диаграмме?» УФН 182 1137–1156 (2012); DOI: 10.3367/UFNr.0182.201211a.1137

References (73) Cited by (70) ↓ Similar articles (20)

  1. Cockrell C J, Dicks O et al Phys. Rev. E 101 (5) (2020)
  2. Fomin Yu D Physics And Chemistry Of Liquids 57 67 (2019)
  3. Kats E I J. Exp. Theor. Phys. 129 751 (2019)
  4. Fomin YuD, Tsiok E N et al Fluid Phase Equilibria 498 45 (2019)
  5. Kryuchkov N P, Mistryukova L A et al Sci Rep 9 (1) (2019)
  6. Fomin Yu D, Tsiok E N et al Journal Of Molecular Liquids 287 110992 (2019)
  7. Fomin Yu D Molecular Physics 117 2786 (2019)
  8. Pipich V, Schlenstedt K et al Journal Of Membrane Science 573 167 (2019)
  9. Ghandili A, Moeini V Physics And Chemistry Of Liquids 1 (2019)
  10. Brazhkin V V, Prescher C et al J. Phys. Chem. B 122 6124 (2018)
  11. Kats E I J. Exp. Theor. Phys. 127 939 (2018)
  12. Lazarev A V, Tatarenko P A, Tatarenko K A Russ. J. Phys. Chem. B 12 1152 (2018)
  13. Fomin Yu D, Ryzhov V N et al J. Phys.: Condens. Matter 30 134003 (2018)
  14. Khomkin A L, Shumikhin A S High Temp 56 467 (2018)
  15. Khomkin A L, Shumikhin A S Plasma Phys. Rep. 44 958 (2018)
  16. Pipich V, Schwahn D Phys. Rev. Lett. 120 (14) (2018)
  17. Tareyeva E E, Fomin Yu D et al Theor Math Phys 194 148 (2018)
  18. Brazhkin V V, Fomin Yu D et al Physica A: Statistical Mechanics And Its Applications 509 690 (2018)
  19. Mareev E, Aleshkevich V et al Opt. Express 26 13229 (2018)
  20. Khomkin A L, Shumikhin A S J. Exp. Theor. Phys. 125 1189 (2017)
  21. Brazhkin V V Uspekhi Fizicheskikh Nauk 187 1028 (2017)
  22. Baldock R J N Classical Statistical Mechanics with Nested Sampling Springer Theses Chapter 5 (2017) p. 31
  23. Wang L, Yang C et al Phys. Rev. E 95 (3) (2017)
  24. Artemenko S, Krijgsman P, Mazur V Journal Of Molecular Liquids 238 122 (2017)
  25. Khrapak S, Klumov B, Couëdel L Sci Rep 7 (1) (2017)
  26. Prescher C, Fomin Yu D et al Phys. Rev. B 95 (13) (2017)
  27. Fomin Yu D, Ryzhov V N et al J. Phys.: Condens. Matter 29 345401 (2017)
  28. Khomkin A L, Shumikhin A S J. Exp. Theor. Phys. 124 70 (2017)
  29. Khomkin A L, Shumikhin A S J. Exp. Theor. Phys. 124 1001 (2017)
  30. Wang L, Dove M T et al Phys. Rev. E 96 (1) (2017)
  31. Baldock R J N Classical Statistical Mechanics with Nested Sampling Springer Theses Chapter 8 (2017) p. 61
  32. Fomin Yu D, Ryzhov V N et al Physica A: Statistical Mechanics And Its Applications 444 890 (2016)
  33. Desgranges C, Margo A, Delhommelle Je Chemical Physics Letters 658 37 (2016)
  34. Khomkin A L, Shumikhin A S J. Exp. Theor. Phys. 123 891 (2016)
  35. Desgranges C, Delhommelle Je The Journal Of Chemical Physics 145 184504 (2016)
  36. Gaiduk E A, Fomin Yu D et al Fluid Phase Equilibria 417 237 (2016)
  37. Norman G E, Saitov I M J. Phys.: Conf. Ser. 774 012015 (2016)
  38. Tareeva E E, Tareeva E E i dr Teoreticheskaya Matematicheskaya Fizika 189 464 (2016) [Tareyeva E E, Ryzhov V N Theor Math Phys 189 1806 (2016)]
  39. Khusnutdinoff R M Colloid J 78 225 (2016)
  40. Dyre Je C J. Phys.: Condens. Matter 28 323001 (2016)
  41. Fomin Yu D, Ryzhov V N et al J. Phys.: Condens. Matter 28 43LT01 (2016)
  42. Vorob’ev V S, Apfelbaum E M High Temp 54 175 (2016)
  43. Trachenko K, Brazhkin V V Rep. Prog. Phys. 79 016502 (2016)
  44. Fomin Yu D, Ryzhov V N et al Sci Rep 5 (1) (2015)
  45. Fomin Yu D, Ryzhov V N et al Phys. Rev. E 91 (2) (2015)
  46. Khomkin A L, Shumikhin A S J. Phys.: Conf. Ser. 653 012083 (2015)
  47. Trachenko K, Brazhkin V V Phys. Rev. E 91 (3) (2015)
  48. Apfelbaum E, Vorob’ev V Springer Proceedings In Physics Vol. Physics of Liquid Matter: Modern Problems171 Chapter 6 (2015) p. 139
  49. Fomin Yu D, Ryzhov V N et al Sci Rep 4 (1) (2015)
  50. Khomkin A L, Shumikhin A S J. Exp. Theor. Phys. 121 521 (2015)
  51. Armstrong G Eur. J. Phys. 36 063001 (2015)
  52. Maslov V P Russ. J. Math. Phys. 21 256 (2014)
  53. Ryltsev R E, Chtchelkatchev N M The Journal Of Chemical Physics 141 124509 (2014)
  54. Maslov V P Math Notes 96 403 (2014)
  55. Maslov V P Russ. J. Math. Phys. 21 99 (2014)
  56. Maslov V P Math Notes 95 670 (2014)
  57. Fedyaeva O N, Vostrikov A A et al Russ. J. Phys. Chem. B 8 1054 (2014)
  58. Brazhkin V V, Fomin Yu D et al Phys. Rev. E 89 (4) (2014)
  59. Khusnutdinoff R M, Mokshin A V Jetp Lett. 100 39 (2014)
  60. Bryk T, Gorelli F et al Phys. Rev. E 90 (4) (2014)
  61. Maslov V P, Maslov V P Teoreticheskaya Matematicheskaya Fizika 180 394 (2014) [Maslov V P Theor Math Phys 180 1096 (2014)]
  62. Brazhkin V V, Lyapin A G et al Russ. J. Phys. Chem. B 8 1087 (2014)
  63. Maslov V P Math Notes 95 91 (2014)
  64. Maslov V P Math Notes 94 532 (2013)
  65. Maslov V P Math Notes 94 231 (2013)
  66. Apfelbaum E M, Vorob’ev V S J. Phys. Chem. B 117 7750 (2013)
  67. Maslov V P Math Notes 94 722 (2013)
  68. Brazhkin V V, Fomin Yu D et al Phys. Rev. Lett. 111 (14) (2013)
  69. Nikolaev P N Moscow Univ. Phys. 68 196 (2013)
  70. Maslov, Maslov Matematicheskie Zametki 94 237 (2013)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions