Issues

 / 

2011

 / 

September

  

Reviews of topical problems


Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features

 a, b,  b,  b
a National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
b Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

A comparative analysis of the fundamental properties of fluctuations in the vicinity of boundaries in fusion plasmas and in plasmas of magnetospheric turbulent boundary layers (TBLs) shows the similarity of their basic statistical characteristics, including the scaling of the structure functions and mutifractal parameters. Important features observed include intermittent fluctuations and anomalous mass and momentum transport, due to sporadic plasma flow injections with large flow amplitudes occuring with a much higher probability than predicted for classical Gaussian diffusion. Turbulence in edge fusion plasmas and in TBLs exhibits general self-similarity in a wide range of scales extending to the dissipation scale. Experimental scalings obtained for plasma TBLs are compared with neutral fluid results, revealing the universal properties of developed turbulence. TBL scalings are described within the log-Poisson model, which takes quasi-one-dimensional dissipative structures into account. The time ($\tau$) dependence of the mean-square displacement $\langle \delta x^2 \rangle$ obtained from the experimental parameters of the log-Poisson distribution takes the form $\langle \delta x^2 \rangle \propto \tau^{\alpha}$ with $\alpha \approx$ 1.2–1.8 and indicates the presence of superdiffusion in the TBLs studied. Determining the nature of the generalized diffusion process from available regular data is a necessary step toward the quantitative description of TBL transport.

Fulltext pdf (1.4 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0181.201109a.0905
PACS: 05.45.−a, 47.27.−i, 52.35.Ra (all)
DOI: 10.3367/UFNe.0181.201109a.0905
URL: https://ufn.ru/en/articles/2011/9/a/
000298416500001
2011PhyU...54..875B
Citation: Budaev V P, Savin S P, Zelenyi L M "Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features" Phys. Usp. 54 875–918 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, July 2010, revised: 22nd, February 2011, 2nd, March 2011

Оригинал: Будаев В П, Савин С П, Зелёный Л М «Наблюдения перемежаемости и обобщённого самоподобия в турбулентных пограничных слоях лабораторной и магнитосферной плазмы: на пути к определению количественных характеристик переноса» УФН 181 905–952 (2011); DOI: 10.3367/UFNr.0181.201109a.0905

References (300) Cited by (64) ↓ Similar articles (20)

  1. Arkashov N S, Seleznev V A Comput. Math. And Math. Phys. 64 441 (2024)
  2. Arkashov N S, Seleznev V A Žurnal Vyčislitelʹnoj Matematiki I Matematičeskoj Fiziki 64 473 (2024)
  3. Levashov N N, Popov V Yu et al Kosmičeskie Issledovaniâ 61 116 (2023)
  4. Arkashov N S, Seleznev V A 33 (7) (2023)
  5. Pisarchik A N, Hramov A E Uspekhi Fizicheskikh Nauk 193 1298 (2023)
  6. [Pisarchik A N, Hramov A E Phys. Usp. 66 1224 (2023)]
  7. Levashov N N, Popov V Yu et al Cosmic Res 61 113 (2023)
  8. Levashov N N, Popov V Yu et al Cosmic Res 60 9 (2022)
  9. Arkashov N S Physica A: Statistical Mechanics And Its Applications 603 127795 (2022)
  10. Dedov A V, Budaev V P Symmetry 14 2346 (2022)
  11. Batanov G M, Borzosekov V D et al Plasma Phys. Rep. 48 740 (2022)
  12. Rakhmanova L, Riazantseva M, Zastenker G Front. Astron. Space Sci. 7 (2021)
  13. Fedorovich S D, Karpov A V et al Plasma Phys. Rep. 47 345 (2021)
  14. Budaev V P Symmetry 13 796 (2021)
  15. Budaev V P, Fedorovich S et al Fusion Engineering And Design 167 112335 (2021)
  16. Budaev V P, Fedorovich S D et al J. Phys.: Conf. Ser. 1686 012015 (2020)
  17. Budaev V P, Fedorovich S D et al Heliyon 6 e05510 (2020)
  18. Batanov G M, Borzosekov V D et al Plasma Phys. Rep. 46 955 (2020)
  19. Budaev V P, Fedorovich S D et al J. Phys.: Conf. Ser. 1683 032015 (2020)
  20. Budaev V P, Lyublinsky I E et al Nuclear Materials And Energy 25 100834 (2020)
  21. Budaev V P, Fedorovich S D et al Nuclear Materials And Energy 25 100816 (2020)
  22. Budaev V P, Fedorovich S D et al J. Phys.: Conf. Ser. 1556 012087 (2020)
  23. Budaev V P, Fedorovich S et al Fusion Engineering And Design 155 111694 (2020)
  24. Fedorovich S D, Budaev V P et al J. Phys.: Conf. Ser. 1370 012044 (2019)
  25. Fedorovich S D, Budaev V P et al J. Phys.: Conf. Ser. 1370 012045 (2019)
  26. Gerasimov D N, Fedorovich S D et al J. Phys.: Conf. Ser. 1370 012047 (2019)
  27. Budaev V P, Fedorovich S D et al J. Phys.: Conf. Ser. 1370 012042 (2019)
  28. Budaev V P, Khimchenko L N et al J. Phys.: Conf. Ser. 1370 012046 (2019)
  29. Budaev V P, Dedov A V et al J. Phys.: Conf. Ser. 1383 012016 (2019)
  30. Smolanov N A J. Phys.: Conf. Ser. 1281 012078 (2019)
  31. Budaev V P J. Phys.: Conf. Ser. 1238 012048 (2019)
  32. Budaev V P, Fedorovich S D et al J. Phys.: Conf. Ser. 1383 012015 (2019)
  33. Arkashov N S Comput. Math. And Math. Phys. 59 402 (2019)
  34. Batanov G M, Borzosekov V D et al Plasma Phys. Control. Fusion 61 075006 (2019)
  35. Budaev V P, Dedov A V et al J. Phys.: Conf. Ser. 1370 012043 (2019)
  36. Budaev V P, Dedov A V et al J. Phys.: Conf. Ser. 1383 012017 (2019)
  37. Smolanov N A J. Synch. Investig. 12 593 (2018)
  38. Budaev V P J. Phys.: Conf. Ser. 1094 012016 (2018)
  39. Budaev V P J. Phys.: Conf. Ser. 891 012301 (2017)
  40. Budaev V P Physics Letters A 381 3706 (2017)
  41. Smolanov N A J. Synch. Investig. 11 353 (2017)
  42. Riazantseva M O, Budaev V P et al Geomagn. Aeron. 57 645 (2017)
  43. Arkashov N S, Seleznev V A Theor Math Phys 193 1508 (2017)
  44. Riazantseva M, Budaev V et al J. Plasma Phys. 83 (4) (2017)
  45. Budaev V P Jetp Lett. 105 307 (2017)
  46. Silin V P, Budaev V P et al Bull. Lebedev Phys. Inst. 43 132 (2016)
  47. Riazantseva M O, Budaev V P et al Advances In Space Research 58 166 (2016)
  48. Sharma A S, Aschwanden M J et al Space Sci Rev 198 167 (2016)
  49. Gembarzhevskii G V, Lednev A K, Osipenko K Yu Tech. Phys. Lett. 41 1132 (2015)
  50. Budaev V  P, Zelenyi L  M, Savin S  P J. Plasma Phys. 81 (6) (2015)
  51. Krivodubskij V N Kinemat. Phys. Celest. Bodies 31 55 (2015)
  52. Riazantseva M O, Budaev V P et al Phil. Trans. R. Soc. A. 373 20140146 (2015)
  53. Gembarzhevskii G V JMP 06 46 (2015)
  54. Zybin K P, Sirota V A Uspekhi Fizicheskikh Nauk 185 593 (2015) [Zybin K P, Sirota V A Phys.-Usp. 58 556 (2015)]
  55. Anisimov S V, Shikhova N M Atmospheric Research 135-136 255 (2014)
  56. Chernyshov A A, Karelsky K V, Petrosyan A S Uspekhi Fizicheskikh Nauk 184 457 (2014) [Chernyshov A A, Karelsky K V, Petrosyan A S Phys.-Usp. 57 421 (2014)]
  57. Savin S, Amata E et al Jetp Lett. 99 16 (2014)
  58. Kozak L V, Kostyk R I, Cheremnykh O K Kinemat. Phys. Celest. Bodies 29 66 (2013)
  59. Zelenyi L, Artemyev A Space Sci Rev 178 441 (2013)
  60. Vasil’kov D G, Kholnov Yu V, Shchepetov S V Plasma Phys. Rep. 39 615 (2013)
  61. Bakunin O G Uspekhi Fizicheskikh Nauk 183 257 (2013) [Bakunin O G Phys.-Usp. 56 243 (2013)]
  62. Zelenyi L, Artemyev A Space Sciences Series Of ISSI Vol. Microphysics of Cosmic PlasmasMechanisms of Spontaneous Reconnection: From Magnetospheric to Fusion Plasma47 Chapter 14 (2013) p. 365
  63. Gorchakov G I, Karpov A V et al Atmos Ocean Opt 25 423 (2012)
  64. Budaev V P, Grashin S A et al Jetp Lett. 95 78 (2012)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions