Reviews of topical problems

Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features

 a, b,  b,  b
a National Research Centre ‘Kurchatov Institute’, pl. akad. Kurchatova 1, Moscow, 123182, Russian Federation
b Space Research Institute, Russian Academy of Sciences, Profsoyuznaya str. 84/32, Moscow, 117997, Russian Federation

A comparative analysis of the fundamental properties of fluctuations in the vicinity of boundaries in fusion plasmas and in plasmas of magnetospheric turbulent boundary layers (TBLs) shows the similarity of their basic statistical characteristics, including the scaling of the structure functions and mutifractal parameters. Important features observed include intermittent fluctuations and anomalous mass and momentum transport, due to sporadic plasma flow injections with large flow amplitudes occuring with a much higher probability than predicted for classical Gaussian diffusion. Turbulence in edge fusion plasmas and in TBLs exhibits general self-similarity in a wide range of scales extending to the dissipation scale. Experimental scalings obtained for plasma TBLs are compared with neutral fluid results, revealing the universal properties of developed turbulence. TBL scalings are described within the log-Poisson model, which takes quasi-one-dimensional dissipative structures into account. The time ($\tau$) dependence of the mean-square displacement $\langle \delta x^2 \rangle$ obtained from the experimental parameters of the log-Poisson distribution takes the form $\langle \delta x^2 \rangle \propto \tau^{\alpha}$ with $\alpha \approx$ 1.2–1.8 and indicates the presence of superdiffusion in the TBLs studied. Determining the nature of the generalized diffusion process from available regular data is a necessary step toward the quantitative description of TBL transport.

Fulltext pdf (1.4 MB)
Fulltext is also available at DOI: 10.3367/UFNe.0181.201109a.0905
PACS: 05.45.−a, 47.27.−i, 52.35.Ra (all)
DOI: 10.3367/UFNe.0181.201109a.0905
Citation: Budaev V P, Savin S P, Zelenyi L M "Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: towards a quantitative definition of plasma transport features" Phys. Usp. 54 875–918 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 2nd, July 2010, revised: 22nd, February 2011, 2nd, March 2011

Оригинал: Будаев В П, Савин С П, Зелёный Л М «Наблюдения перемежаемости и обобщённого самоподобия в турбулентных пограничных слоях лабораторной и магнитосферной плазмы: на пути к определению количественных характеристик переноса» УФН 181 905–952 (2011); DOI: 10.3367/UFNr.0181.201109a.0905

References (300) Cited by (64) Similar articles (20) ↓

  1. M.V. Kalashnik, M.V. Kurgansky, O.G. Chkhetiani “Baroclinic instability in geophysical fluid dynamics65 1039–1070 (2022)
  2. K.V. Koshel, S.V. Prants “Chaotic advection in the ocean49 1151–1178 (2006)
  3. L.M. Zelenyi, A.V. Milovanov “Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics47 749–788 (2004)
  4. O.G. Onishchenko, O.A. Pokhotelov et alStructure and dynamics of concentrated mesoscale vortices in planetary atmospheres63 683–697 (2020)
  5. B.M. Smirnov “Electrical cycle in the Earth’s atmosphere57 1041–1062 (2014)
  6. A.N. Vulfson, O.O. Borodin “The system of convective thermals as a generalized ensemble of Brownian particles59 109–120 (2016)
  7. A.A. Chernyshov, K.V. Karelsky, A.S. Petrosyan “Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas57 421–452 (2014)
  8. O.G. Onishchenko, O.A. Pokhotelov, N.M. Astaf’eva “Generation of large-scale eddies and zonal winds in planetary atmospheres51 577–589 (2008)
  9. A.I. Olemskoi, A.Ya. Flat “Application of fractals in condensed-matter physics36 (12) 1087–1128 (1993)
  10. O.G. Bakunin “Stochastic instability and turbulent transport. Characteristic scales, increments, diffusion coefficients58 252–285 (2015)
  11. K.P. Zybin, V.A. Sirota “Stretching vortex filaments model and the grounds of statistical theory of turbulence58 556–573 (2015)
  12. V.M. Fedorov “Problems of parameterization of the radiation block in physical and mathematical climate models and the possibility of their solution66 914–930 (2023)
  13. F.V. Dolzhanskii, V.A. Krymov, D.Yu. Manin “Stability and vortex structures of quasi-two-dimensional shear flows33 (7) 495–520 (1990)
  14. V.K. Vanag “Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions47 923–941 (2004)
  15. A.B. Medvinskii, S.V. Petrovskii et alSpatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics45 27–57 (2002)
  16. A.M. Bykov, I.N. Toptygin “Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods)36 (11) 1020–1052 (1993)
  17. L.S. Ledentsov, B.V. Somov “Discontinuous plasma flows in magnetohydrodynamics and in the physics of magnetic reconnection58 107–133 (2015)
  18. V.I. Klyatskin “Integral characteristics: a key to understanding structure formation in stochastic dynamic systems54 441–464 (2011)
  19. A. Loskutov “Fascination of chaos53 1257–1280 (2010)
  20. A.E. Hramov, N.S. Frolov et alFunctional networks of the brain: from connectivity restoration to dynamic integration64 584–616 (2021)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions