Issues

 / 

2011

 / 

May

  

Methodological notes


Measurability of quantum fields and the energy—time uncertainty relation


Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy — time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy — time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy — time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works.

Fulltext pdf (202 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0181.201105f.0543
PACS: 03.65.Ta, 03.75.−b, 07.79.Fc (all)
DOI: 10.3367/UFNe.0181.201105f.0543
URL: https://ufn.ru/en/articles/2011/5/e/
000294814900005
2-s2.0-80051890643
2011PhyU...54..519M
Citation: Mensky M B "Measurability of quantum fields and the energy—time uncertainty relation" Phys. Usp. 54 519–528 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, August 2010, revised: 6th, December 2010, 30th, November 2010

Оригинал: Менский М Б «Измеримость квантовых полей и соотношение неопределённостей энергия — время» УФН 181 543–552 (2011); DOI: 10.3367/UFNr.0181.201105f.0543

References (12) Cited by (4) Similar articles (20) ↓

  1. B.B. Kadomtsev “Irreversibility in quantum mechanicsPhys. Usp. 46 1183–1201 (2003)
  2. A.V. Belinskii “Bell’s theorem for trichotomic observablesPhys. Usp. 40 305–316 (1997)
  3. Yu.I. Vorontsov “The uncertainty relation between energy and time of measurementSov. Phys. Usp. 24 150–158 (1981)
  4. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variablesSov. Phys. Usp. 32 555–563 (1989)
  5. D.N. Klyshko “A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principleSov. Phys. Usp. 31 74–85 (1988)
  6. S.P. Vyatchanin, F.Ya. Khalili “’Interaction-free’ measurement: possibilities and limitationsPhys. Usp. 47 705–716 (2004)
  7. V.V. Mityugov “The tree of paradoxPhys. Usp. 36 (8) 744–753 (1993)
  8. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherencePhys. Usp. 61 1016–1025 (2018)
  9. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillationsPhys. Usp. 46 293–307 (2003)
  10. V.B. Braginskii “Adolescent years of experimental physicsPhys. Usp. 46 81–87 (2003)
  11. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effectsPhys. Usp. 47 797–820 (2004)
  12. A.V. Belinsky “On David Bohm's 'pilot-wave' conceptPhys. Usp. 62 1268–1278 (2019)
  13. V.L. Gorshenin, B.N. Nougmanov, F.Ya. Khalili “On 'Schrödinger's cat' fringesPhys. Usp. 67 938–942 (2024)
  14. V.P. Demutskii, R.V. Polovin “Conceptual problems in quantum mechanicsSov. Phys. Usp. 35 (10) 857–896 (1992)
  15. A.S. Tarnovskii “A new representation of quantum mechanicsSov. Phys. Usp. 33 (10) 862–864 (1990)
  16. Yu.A. Kosevich, L.I. Manevitch, E.L. Manevitch “Vibrational analogue of nonadiabatic Landau — Zener tunneling and a possibility for the creation of a new type of energy trapPhys. Usp. 53 1281–1286 (2010)
  17. A.I. Akhiezer, R.V. Polovin “Why IT IS impossible to introduce hidden parameters into quantum mechanicsSov. Phys. Usp. 15 500–512 (1973)
  18. A.V. Belinskii, A.S. Chirkin “Bernstein’s paradox of entangled quantum statesPhys. Usp. 56 1126–1131 (2013)
  19. A.A. Grib “On the problem of the interpretation of quantum physicsPhys. Usp. 56 1230–1244 (2013)
  20. A.V. Belinsky, M.Kh. Shulman “Quantum nature of a nonlinear beam splitterPhys. Usp. 57 1022–1034 (2014)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions