Methodological notes

Measurability of quantum fields and the energy—time uncertainty relation

Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prosp. 53, Moscow, 119991, Russian Federation

Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy — time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy — time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy — time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works.

Fulltext is available at IOP
PACS: 03.65.Ta, 03.75.−b, 07.79.Fc (all)
DOI: 10.3367/UFNe.0181.201105f.0543
Citation: Mensky M B "Measurability of quantum fields and the energy—time uncertainty relation" Phys. Usp. 54 519–528 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 24th, August 2010, revised: 6th, December 2010, 30th, November 2010

Оригинал: Менский М Б «Измеримость квантовых полей и соотношение неопределённостей энергия — время» УФН 181 543–552 (2011); DOI: 10.3367/UFNr.0181.201105f.0543

References (12) Cited by (4) Similar articles (20) ↓

  1. B.B. Kadomtsev “Irreversibility in quantum mechanics46 1183–1201 (2003)
  2. A.V. Belinskii “Bell’s theorem for trichotomic observables40 305–316 (1997)
  3. D.N. Klyshko “The Einstein-Podolsky-Rosen paradox for energy-time variables32 555–563 (1989)
  4. D.N. Klyshko “A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle31 74–85 (1988)
  5. Yu.I. Vorontsov “The uncertainty relation between energy and time of measurement24 150–158 (1981)
  6. S.P. Vyatchanin, F.Ya. Khalili “’Interaction-free’ measurement: possibilities and limitations47 705–716 (2004)
  7. A.M. Zheltikov “The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherence61 1016–1025 (2018)
  8. F.Ya. Khalili “Zero-point oscillations, zero-point fluctuations, and fluctuations of zero-point oscillations46 293–307 (2003)
  9. V.B. Braginskii “Adolescent years of experimental physics46 81–87 (2003)
  10. A.I. Musienko, L.I. Manevich “Classical mechanical analogs of relativistic effects47 797–820 (2004)
  11. A.V. Belinsky “On David Bohm's 'pilot-wave' concept62 1268–1278 (2019)
  12. V.V. Mityugov “The tree of paradox36 (8) 744–753 (1993)
  13. V.P. Demutskii, R.V. Polovin “Conceptual problems in quantum mechanics35 (10) 857–896 (1992)
  14. A.S. Tarnovskii “A new representation of quantum mechanics33 (10) 862–864 (1990)
  15. Yu.A. Kosevich, L.I. Manevitch, E.L. Manevitch “Vibrational analogue of nonadiabatic Landau — Zener tunneling and a possibility for the creation of a new type of energy trap53 1281–1286 (2010)
  16. A.I. Akhiezer, R.V. Polovin “Why IT IS impossible to introduce hidden parameters into quantum mechanics15 500–512 (1973)
  17. A.V. Belinskii, A.S. Chirkin “Bernstein’s paradox of entangled quantum states56 1126–1131 (2013)
  18. A.A. Grib “On the problem of the interpretation of quantum physics56 1230–1244 (2013)
  19. B.M. Bolotovskii, S.N. Stolyarov “Law of conservation of energy for the electromagnetic field as applied to radiation by moving charged particles35 (3) 248–254 (1992)
  20. V.V. Shevchenko “Localization of a stationary electromagnetic field by a planar boundary of a metamaterial54 1131–1142 (2011)

The list is formed automatically.

© 1918–2021 Uspekhi Fizicheskikh Nauk
Email: Editorial office contacts About the journal Terms and conditions