Issues

 / 

2011

 / 

March

  

Reviews of topical problems


Universal randomness

 a, b
a LPTMC, Université, Paris, France
b Landau Institute for Theoretical Physics, Russian Academy of Sciences, ul. Kosygina 2, Moscow, 119334, Russian Federation

In the last two decades, it has been established that a single universal probability distribution function, known as the Tracy — Widom (TW) distribution, in many cases provides a macroscopic-level description of the statistical properties of microscopically different systems, including both purely mathematical ones, such as increasing subsequences in random permutations, and quite physical ones, such as directed polymers in random media or polynuclear crystal growth. In the first part of this review, we use a number of models to examine this phenomenon at a simple qualitative level and then consider the exact solution for one-dimensional directed polymers in a random environment, showing that free energy fluctuations in such a system are described by the universal TW distribution. The second part provides detailed appendix material containing the necessary mathematical background for the first part.

Fulltext is available at IOP
PACS: 02.50.Cw, 02.90.+p, 05.20.−y, 05.40.−a, 61.41.+e (all)
DOI: 10.3367/UFNe.0181.201103b.0269
URL: https://ufn.ru/en/articles/2011/3/b/
Citation: Dotsenko V S "Universal randomness" Phys. Usp. 54 259–280 (2011)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Received: 16th, July 2010, 13th, October 2010

Оригинал: Доценко В С «Универсальная случайность» УФН 181 269–292 (2011); DOI: 10.3367/UFNr.0181.201103b.0269

References (54) ↓ Cited by (16) Similar articles (20)

  1. Tracy C A, Widom H Commun. Math. Phys. 159 151 (1994)
  2. Baik J, Deift P, Johansson K J. Am. Math. Soc. 12 1119 (1999)
  3. Majumdar S N, Nechaev S Phys. Rev. E 72 020901(R) (2005)
  4. Johansson K Commun. Math. Phys. 209 437 (2000)
  5. Prähofer M, Spohn H Phys. Rev. Lett. 84 4882 (2000)
  6. Gravner J, Tracy C A, Widom H J. Stat. Phys. 102 1085 (2001)
  7. Majumdar S N, Nechaev S Phys. Rev. E 69 011103 (2004)
  8. Kardar M, Parisi G, Zhang Y-C Phys. Rev. Lett. 56 889 (1986)
  9. Sasamoto T, Spohn H J. Stat. Phys. 140 209 (2010); Sasamoto T, Spohn H arXiv:1002.1873; Sasamoto T, Spohn H Nucl. Phys. B 834 523 (2010); Sasamoto T, Spohn H arXiv:1002.1879; Sasamoto T, Spohn H Phys. Rev. Lett. 104 230602 (2010); Sasamoto T, Spohn H arXiv:1002.1883
  10. Amir G, Corwin I, Quastel J arXiv:1003.0443
  11. Dotsenko V, Klumov B J. Stat. Mech. P03022 (2010)
  12. Dotsenko V Europhys. Lett. 90 20003 (2010)
  13. Dotsenko V J. Stat. Mech. P07010 (2010)
  14. Calabrese P, Le Doussal P, Rosso A Europhys. Lett. 90 20002 (2010); Calabrese P, Le Doussal P, Rosso A arXiv:1002.4560
  15. Halpin-Healy T, Zhang Y-C Phys. Rep. 254 215 (1995)
  16. Lemerle S et al. Phys. Rev. Lett. 80 849 (1998)
  17. Blatter G et al. Rev. Mod. Phys. 66 1125 (1994)
  18. Wilkinson D, Willemsen J F J. Phys. A Mat. Gen. 16 3365 (1983)
  19. Burgers J M The Nonlinear Diffusion Equation (Dordrecht: D. Reidel, 1974)
  20. Ulam S M Modern Mathematics For The Engineers (Ed. E F Beckenbach) (New York: McGraw-Hill, 1961)
  21. Vershik A M, Kerov S V Dokl. Akad. Nauk SSSR 233 1024 (1977); Vershik A M, Kerov S V Sov. Math. Dokl. 18 527 (1977)
  22. Aldous D, Diaconis P Bull. Am. Math. Soc. 36 413 (1999)
  23. Ferrari P L "Shape fluctuations of crystal facets and surface growth in one dimension" PhD Thesis (München: Technische Univ., 2004)
  24. Takeuchi K A, Sano M Phys. Rev. Lett. 104 230601 (2010)
  25. Krug J, Meakin P, Halpin-Healy T Phys. Rev. A 45 638 (1992)
  26. Huse D A, Henley C L, Fisher D S Phys. Rev. Lett. 55 2924 (1985)
  27. Huse D A, Henley C L Phys. Rev. Lett. 54 2708 (1985)
  28. Kardar M, Zhang Y-C Phys. Rev. Lett. 58 2087 (1987)
  29. Kardar M Nucl. Phys. B 290 582 (1987)
  30. Dotsenko V S Usp. Fiz. Nauk 165 481 (1995); Dotsenko V S Phys. Usp. 38 457 (1995)
  31. Dotsenko V Introduction To The Replica Theory Of Disordered Statistical Systems (New York: Cambridge Univ. Press, 2001)
  32. Verbaarschot J J M, Zirnbauer M R J. Phys. A Mat. Gen. 18 1093 (1985)
  33. Dotsenko V "One more discussion of the replica trick: the examples of exact solutions" arXiv:1010.3913
  34. Derrida B Phys. Rev. B 24 2613 (1981)
  35. Wigner E P Proc. Cambridge Philos. Soc. 47 790 (1951)
  36. Tracy C A, Widom H Commun. Math. Phys. 177 727 (1996)
  37. Painlevé P "Sur les équation différentielles du second odre et d’ordre supérieur dont l’intégrale générale est uniforme" Acta. Math. 25 1 (1902)
  38. Clarkson P A J. Comput. Appl. Math. 153 127 (2003)
  39. Lieb E H, Liniger W Phys. Rev. 130 1605 (1963)
  40. Korepin V E, Bogoliubov N M, Izergin A G Quantum Inverse Scattering Method And Correlation Functions (Cambridge: Cambridge Univ. Press, 1993); Bogolyubov N M, Izergin A G, Korepin V E Korrelyatsionnye Funktsii Integriruemykh Sistem i Kvantovyi Metod Obratnoi Zadachi (M.: Nauka, 1992)
  41. Gaudin M La Fonction D’onde De Bethe (Paris: Masson, 1983)
  42. McGuire J B J. Math. Phys. 5 622 (1964)
  43. Yang C N Phys. Rev. 168 1920 (1968)
  44. Takahashi M Thermodynamics Of One-Dimensional Solvable Models (Cambridge: Cambridge Univ. Press, 1999)
  45. Calabrese P, Caux J-S Phys. Rev. Lett. 98 150403 (2007)
  46. Mehta M L Random Matrices (Amsterdam: Elsevier, 2004)
  47. Medina E, Kardar M J. Stat. Phys. 71 967 (1993)
  48. Dotsenko V S et al. Phys. Rev. Lett. 100 050601 (2008)
  49. Zhang Y-C Europhys. Lett. 9 113 (1989)
  50. Kolokolov I V, Korshunov S E Phys. Rev. B 75 140201(R) (2007)
  51. Kolokolov I V, Korshunov S E Phys. Rev. B 78 024206 (2008)
  52. Kolokolov I V, Korshunov S E Phys. Rev. E 80 031107 (2009)
  53. Iwasaki K et al. From Gauss To Painlevé: A Modern Theory Of Special Functions (Braunschweig: Vieweg, 1991)
  54. Hastings S P, McLeod J B Arch. Ration. Mech. Anal. 73 31 (1980)

© 1918–2022 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions