Issues

 / 

2010

 / 

October

  

Methodological notes


On melting criteria for complex plasma

 a, b
a Max-Planck Institute for Extraterrestrial Physics, Postfach 1312, Giessenbechstrasse 85748 , Garching, 85741, Germany
b Joint Institute for High Temperatures, Russian Academy of Sciences, ul. Izhorskaya 13/19, Moscow, 127412, Russian Federation

The present paper considers melting criteria for a plasma crystal discovered in dust plasma in 1994. Separate discussions are devoted to three-dimensional (3D) and two-dimensional (2D) systems. In the 3D case, melting criteria are derived based on the properties of local order in a system of microparticles. The order parameters are constructed from the cumulative distributions of the microparticle probability distributions as functions of various rotational invariants. The melting criteria proposed are constructed using static information on microparticle positions: a few snapshots of the system that allow for the determination of particle coordinates are enough to determine the phase state of the system. It is shown that criteria obtained in this way describe well the melting and premelting of 3D complex plasmas. In 2D systems, a system of microparticles interacting via a screened Coulomb (i.e., Debye — Hückel or Yukawa) potential is considered as an example, using molecular dynamics simulations. A number of new order parameters characterizing the melting of 2D complex plasmas are proposed. The order parameters and melting criteria proposed for 2D and 3D complex plasmas can be applied to other systems as well.

Fulltext is available at IOP
PACS: 52.27.Lw, 52.65.Yy, 61.72.J−, 64.70.D− (all)
DOI: 10.3367/UFNe.0180.201010e.1095
URL: https://ufn.ru/en/articles/2010/10/e/
Citation: Klumov B A "On melting criteria for complex plasma" Phys. Usp. 53 1053–1065 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Клумов Б А «О критериях плавления комплексной плазмы» УФН 180 1095–1108 (2010); DOI: 10.3367/UFNr.0180.201010e.1095

References (50) ↓ Cited by (73) Similar articles (7)

  1. Fortov V E i dr. Usp. Fiz. Nauk 174 495 (2004); Fortov V E et al. Phys. Usp. 47 447 (2004)
  2. Morfill G E et al. Contirb. Plasma Phys. 44 450 (2004)
  3. Morfill G E et al. Phys. Scripta T107 59 (2004)
  4. Robbins M O, Kremer K, Grest G S J. Chem. Phys. 88 3286 (1988)
  5. Morfill G E et al. Phys. Rev. Lett. 92 175004 (2004)
  6. Rubin-Zuzic M et al. Nature Phys. 2 181 (2006)
  7. Klumov B A, Rubin-Zuzich M, Morfill G E Pis’ma ZhETF 84 636 (2006); Klumov B A, Rubin-Zuzic M, Morfill G E JETP Lett. 84 542 (2006)
  8. Zuzic M et al. Phys. Rev. Lett. 85 4064 (2000)
  9. Arp O et al. Phys. Rev. Lett. 93 165004 (2004)
  10. Mitic S et al. Phys. Rev. Lett. 101 125002 (2008)
  11. Bedanov V M, Gadiyak G V, Lozovik Yu E Phys. Lett. A 109 289 (1985)
  12. Zahn K, Maret G Phys. Rev. Lett. 85 (17) 3656 (2000)
  13. Chu J H, Lin I Phys. Rev. Lett. 72 4009 (1994)
  14. Thomas H et al. Phys. Rev. Lett. 73 652 (1994)
  15. Ikezi H Phys. Fluids 29 1764 (1986)
  16. Konopka U, Morfill G E, Ratke L Phys. Rev. Lett. 84 891 (2000)
  17. Ivlev A V et al. Phys. Rev. Lett. 100 095003 (2008)
  18. Klumov B et al. Plasma Phys. Control. Fusion 51 124028 (2009)
  19. Klumov B A et al. EPL (2010), in press
  20. Raveché H J, Mountain R D, Streett W B J. Chem. Phys. 61 1970 (1974)
  21. Steinhardt P J, Nelson D R, Ronchetti M Phys. Rev. B 28 784 (1983)
  22. Auer S, Frenkel D J. Chem. Phys. 120 3015 (2004)
  23. Klumov B A, Morfill G E Pis’ma ZhETF 87 477 (2008); Klumov B A, Morfill G E JETP Lett. 87 409 (2008); Klumov B A, Morfill G E Zh. Eksp. Teor. Fiz. 134 1059 (2008); Klumov B A, Morfill G E JETP 107 908 (2008)
  24. Berezinskii V L Zh. Eksp. Teor. Fiz. 59 907 (1970); Berezinskii V L Sov. Phys. JETP 32 493 (1971)
  25. Kosterlitz J M, Thouless D J J. Phys. C Solid State Phys. 6 1181 (1973)
  26. Nelson D R, Halperin B I Phys. Rev. B 19 2457 (1979)
  27. Young A P Phys. Rev. B 19 1855 (1979)
  28. Pitaevskii L P Usp. Fiz. Nauk 176 345 (2006); Pitaevskii L P Phys. Usp. 49 333 (2006)
  29. Lewenstein M et al. Adv. Phys. 56 243 (2007)
  30. Geim A K, Novoselov K S Nature Mater. 6 183 (2007)
  31. Morozov S V, Novoselov K S, Geim A K Usp. Fiz. Nauk 178 776 (2008); Morozov S V, Novoselov K S, Geim A K Phys. Usp. 51 744 (2008)
  32. Guillamón I et al. Nature Phys. 5 651 (2009)
  33. Gasser U J. Phys. Condens. Matter 21 (20) 203101 (2009)
  34. Bowick M J, Giomi L Adv. Phys. 58 (5) 449 (2009)
  35. Lipowsky P et al. Nature Mater. 4 407 (2005)
  36. Shukla P K, Eliasson B Rev. Mod. Phys. 81 25 (2009)
  37. Pertsinidis A, Ling X S Nature 413 147 (2001)
  38. Thomas H M, Morfill G E Nature 379 806 (1996)
  39. Chu J H, Lin I Phys. Rev. Lett. 72 4009 (1994)
  40. Woon W-Y, Lin I Phys. Rev. Lett. 92 065003 (2004)
  41. Hartmann P et al. Phys. Rev. E 72 026409 (2005)
  42. Naidoo K J, Schnitker J J. Chem. Phys. 100 3114 (1994)
  43. Qi W-K et al. J. Phys. Condens. Matter 20 245102 (2008)
  44. Reichhardt C, Reichhardt C J O Phys. Rev. Lett. 90 095504 (2003)
  45. Couëdel L et al. Phys. Rev. Lett. 103 215001 (2009)
  46. Klumov B A, Morfill G E Pis’ma ZhETF 90 489 (2009); Klumov B A, Morfill G E JETP Lett. 90 444 (2009)
  47. Frenkel D, Smit B Understanding Molecular Simulation: From Algorithms To Applications (San Diego: Academic Press, 2002)
  48. Klumov B A, Morfill G E Pis’ma ZhETF 85 604 (2007); Klumov B A, Morfill G E JETP Lett. 85 498 (2007)
  49. Somer F L (Jr.) et al. Phys. Rev. Lett. 79 3431 (1997)
  50. Knapek C A et al. Phys. Rev. Lett. 98 015004 (2007)

© 1918–2020 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions