Issues

 / 

2010

 / 

January

  

Methodological notes


On the Bose-Einstein condensate partition function for an ideal gas

 a,  b
a Herzen Russian State Pedagogical University, nab. r. Moiki 48, St. Petersburg, 191186, Russian Federation
b V.A. Fock Institute of Physics, St. Petersburg State University, ul. Ulyanovskaya 1, Petrodvorets, St. Petersburg, 198904, Russian Federation

Recursive approaches determining the canonical ideal Bose gas partition function are reviewed that enable the Bose-Einstein condensate occupation probability to be calculated for a finite number of particles ensemble, where the thermodynamic limit approximation fails. In addition to the earlier known method recursive with respect to the number of particles, an iteration procedure with respect to the number of quantum states is proposed. The efficiency of both methods is demonstrated for an ideal Bose gas in a three-dimensional isotropic harmonic trap.

Fulltext pdf (435 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201001e.0089
PACS: 05.30.Jp, 67.85.−d (all)
DOI: 10.3367/UFNe.0180.201001e.0089
URL: https://ufn.ru/en/articles/2010/1/d/
000278717900004
2-s2.0-77954799449
2010PhyU...53...83T
Citation: Trifonov E D, Zagoulaev S N "On the Bose-Einstein condensate partition function for an ideal gas" Phys. Usp. 53 83–90 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Трифонов Е Д, Загуляев С Н «О функции распределения числа частиц в бозе-эйнштейновском конденсате идеального газа» УФН 180 89–96 (2010); DOI: 10.3367/UFNr.0180.201001e.0089

References (24) Cited by (9) Similar articles (11) ↓

  1. E.D. Trifonov “On quantum statistics for ensembles with a finite number of particlesPhys. Usp. 54 723–727 (2011)
  2. K.V. Chukbar “Harmony in many-particle quantum problemPhys. Usp. 61 389–396 (2018)
  3. S.M. Stishov “Notes on the properties of heliumPhys. Usp. 67 338–342 (2024)
  4. E.D. Trifonov “On the spin-statistics theoremPhys. Usp. 60 621–622 (2017)
  5. V.V. Brazhkin “Why does statistical mechanics 'work' in condensed matter?Phys. Usp. 64 1049–1057 (2021)
  6. I.E. Mazets “Kinetic equation including wave function collapsesPhys. Usp. 41 505–507 (1998)
  7. P.K. Volkov “Similarity in problems related to zero-gravity hydromechanicsPhys. Usp. 41 1211–1217 (1998)
  8. V.I. Alshits, V.N. Lyubimov “Plasmon-polariton at the interface of a uniaxial crystal and a metal: real dispersion equation and its analysisPhys. Usp. 66 90–102 (2023)
  9. V.V. Mityugov “The tree of paradoxPhys. Usp. 36 (8) 744–753 (1993)
  10. S.V. Iordanskii, L.P. Pitaevskii “Bose condensation of moving rotonsSov. Phys. Usp. 23 317–318 (1980)
  11. I.G. Kaplan “The exclusion principle and indistinguishability of identical particles in quantum mechanicsSov. Phys. Usp. 18 988–994 (1975)

The list is formed automatically.

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions