Issues

 / 

2010

 / 

January

  

Methodological notes


On the Bose-Einstein condensate partition function for an ideal gas

 a,  b
a Herzen Russian State Pedagogical University, nab. r. Moiki 48, St. Petersburg, 191186, Russian Federation
b V.A. Fock Institute of Physics, St. Petersburg State University, ul. Ulyanovskaya 1, Petrodvorets, St. Petersburg, 198904, Russian Federation

Recursive approaches determining the canonical ideal Bose gas partition function are reviewed that enable the Bose-Einstein condensate occupation probability to be calculated for a finite number of particles ensemble, where the thermodynamic limit approximation fails. In addition to the earlier known method recursive with respect to the number of particles, an iteration procedure with respect to the number of quantum states is proposed. The efficiency of both methods is demonstrated for an ideal Bose gas in a three-dimensional isotropic harmonic trap.

Fulltext pdf (435 KB)
Fulltext is also available at DOI: 10.3367/UFNe.0180.201001e.0089
PACS: 05.30.Jp, 67.85.−d (all)
DOI: 10.3367/UFNe.0180.201001e.0089
URL: https://ufn.ru/en/articles/2010/1/d/
000278717900004
2-s2.0-77954799449
2010PhyU...53...83T
Citation: Trifonov E D, Zagoulaev S N "On the Bose-Einstein condensate partition function for an ideal gas" Phys. Usp. 53 83–90 (2010)
BibTexBibNote ® (generic)BibNote ® (RIS)MedlineRefWorks

Оригинал: Трифонов Е Д, Загуляев С Н «О функции распределения числа частиц в бозе-эйнштейновском конденсате идеального газа» УФН 180 89–96 (2010); DOI: 10.3367/UFNr.0180.201001e.0089

References (24) ↓ Cited by (9) Similar articles (11)

  1. Einstein A Sitzungsber. Preuß Akad. Wiss. Phys.-Math. Kl. 3 - 14 (1925); Einshtein A Sobranie Nauchnykh Trudov Vol. 3 (M.: Nauka, 1966) p. 489 - 592
  2. Fowler R H Statistical Mechanics, The Theory Of The Properties Of Matter In Equilibrium (Cambridge: The Univ. Press, 1936)
  3. Landau L D, Lifshits E M Statisticheskaya Fizika Vol. 1 (M.: Nauka, 1995); Landau L D, Lifshitz E M Statistical Physics Vol. 1 (Oxford: Pergamon Press, 1980)
  4. Leontovich M A Vvedenie v Termodinamiku. Statisticheskaya Fizika (M.: Nauka, 1983)
  5. Ketterle W Rev. Mod. Phys. 74 1131 (2002); Perevod na russk. yaz., Ketterle V Usp. Fiz. Nauk 173 1339 (2003)
  6. Cornell E A, Wieman C E Rev. Mod. Phys. 74 875 (2002); Perevod na russk. yaz., Kornell E A, Viman K E Usp. Fiz. Nauk 173 1320 (2003)
  7. Ketterle W, van Druten N J Phys. Rev. A 54 656 (1996)
  8. Kristen K, Toms D J Phys. Rev. A 54 4188 (1996)
  9. Kagan Yu, Svistunov B V Phys. Rev. Lett. 79 3331 (1997)
  10. Haugerud H, Haugset T, Pavndal F Phys. Lett. A 225 18 (1997)
  11. Pathria R K Phys. Rev. A 58 1490 (1998)
  12. Davis M J, Morgan S A, Burnett K Phys. Rev. Lett. 87 160402 (2001)
  13. Yan Z Eur. J. Phys. 22 233 (2001)
  14. Xiong H, Liu S, Huang G, Xu Z Phys. Rev. A 65 033609 (2002)
  15. Davis M J, Morgan S A Phys. Rev. A 68 053615 (2003)
  16. Sinatra A, Lobo C, Castin Y Phys. Rev. Lett. 87 210404 (2001); Sinatra A, Lobo C, Castin Y J. Phys. B 35 3599 (2002)
  17. Goral K, Gajda M, Rzazewski K Opt. Express 8 (2) 92 (2001); Brewczyk M, Gajda M, Rzażewski K J. Phys. B 40 R1 (2007)
  18. Kocharovsky V V, Kocharovsky Vl V, Scully M O Phys. Rev. Lett. 84 2306 (2000); Kocharovsky V V, Kocharovsky Vl V, Scully M O Phys. Rev. A 61 053606 (2000)
  19. Kocharovsky V V, Scully M O, Zhu S-Y, Zubairy M S Phys. Rev. A 61 023609 (2000)
  20. Pitaevskii L, Stringari S Bose-Einstein Condensation (Oxford: Clarendon Press, 2003)
  21. Kocharovsky Vit V et al. Adv. Atom. Mol. Opt. Phys. 53 291 (2006); Kocharovsky Vit V et al. cond-mat/0605507
  22. Landsberg P T Thermodynamics With Quantum Statistical Illustrations (New-York: Interscience Publ., 1961)
  23. Borrmann P, Franke G J. Chem. Phys. 98 2484 (1993)
  24. Glaum K, Kleinert H, Pelster A Phys. Rev. A 76 063604 (2007)

© 1918–2024 Uspekhi Fizicheskikh Nauk
Email: ufn@ufn.ru Editorial office contacts About the journal Terms and conditions